斜板在线性变化边缘压缩下的振动与屈曲

Abhinav Kumar, S. K. Panda, S. C. Dutta
{"title":"斜板在线性变化边缘压缩下的振动与屈曲","authors":"Abhinav Kumar, S. K. Panda, S. C. Dutta","doi":"10.20855/IJAV.2019.24.21215","DOIUrl":null,"url":null,"abstract":"Pre-buckling vibration and buckling behaviour of composite skew plates subjected to linearly varying in-plane edge\nloading with different boundary conditions are studied. The total energy functional of the skew plate mapped from\nphysical domain to computational domain over which a set of orthonormal polynomials satisfying the essential\nboundary conditions is generated by Gram-Schmidt orthogonalization process. Using Rayleigh-Ritz method in\nconjunction with Boundary Characteristics Orthonormal Polynomials, the total energy functional is converted into\nsets of algebraic equations for static stability problems and ordinary differential equation for free vibration problem.\nPre-buckling vibration frequencies of the stressed skew plate are obtained by solving associated linear eigen value\nproblem for free vibration and solution of the eigen value problem for static case results critical buckling load.\nFrom different parametric study, it is observed that the pre-buckling vibration frequency and critical buckling load\nincrease with the increase of skew angle and edge restraint.","PeriodicalId":227331,"journal":{"name":"June 2019","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration and Buckling of Skew Plates Under\\nLinearly Varying Edge Compression\",\"authors\":\"Abhinav Kumar, S. K. Panda, S. C. Dutta\",\"doi\":\"10.20855/IJAV.2019.24.21215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pre-buckling vibration and buckling behaviour of composite skew plates subjected to linearly varying in-plane edge\\nloading with different boundary conditions are studied. The total energy functional of the skew plate mapped from\\nphysical domain to computational domain over which a set of orthonormal polynomials satisfying the essential\\nboundary conditions is generated by Gram-Schmidt orthogonalization process. Using Rayleigh-Ritz method in\\nconjunction with Boundary Characteristics Orthonormal Polynomials, the total energy functional is converted into\\nsets of algebraic equations for static stability problems and ordinary differential equation for free vibration problem.\\nPre-buckling vibration frequencies of the stressed skew plate are obtained by solving associated linear eigen value\\nproblem for free vibration and solution of the eigen value problem for static case results critical buckling load.\\nFrom different parametric study, it is observed that the pre-buckling vibration frequency and critical buckling load\\nincrease with the increase of skew angle and edge restraint.\",\"PeriodicalId\":227331,\"journal\":{\"name\":\"June 2019\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"June 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20855/IJAV.2019.24.21215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"June 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20855/IJAV.2019.24.21215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了复合材料斜板在不同边界条件下,在线性变化面内边缘载荷作用下的预屈曲振动和屈曲行为。斜板的总能量泛函由物理域映射到计算域,通过Gram-Schmidt正交化生成满足基本边界条件的一组标准正交多项式。利用瑞利-里兹方法结合边界特征正交多项式,将总能量泛函转化为静力稳定问题的代数方程集和自由振动问题的常微分方程集。通过求解自由振动的相关线性特征值问题和静态情况下临界屈曲载荷的相关特征值问题,得到了受应力斜板屈曲前的振动频率。通过不同参数的研究发现,随着斜角和边约束的增加,预屈曲振动频率和临界屈曲载荷均有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration and Buckling of Skew Plates Under Linearly Varying Edge Compression
Pre-buckling vibration and buckling behaviour of composite skew plates subjected to linearly varying in-plane edge loading with different boundary conditions are studied. The total energy functional of the skew plate mapped from physical domain to computational domain over which a set of orthonormal polynomials satisfying the essential boundary conditions is generated by Gram-Schmidt orthogonalization process. Using Rayleigh-Ritz method in conjunction with Boundary Characteristics Orthonormal Polynomials, the total energy functional is converted into sets of algebraic equations for static stability problems and ordinary differential equation for free vibration problem. Pre-buckling vibration frequencies of the stressed skew plate are obtained by solving associated linear eigen value problem for free vibration and solution of the eigen value problem for static case results critical buckling load. From different parametric study, it is observed that the pre-buckling vibration frequency and critical buckling load increase with the increase of skew angle and edge restraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信