时变时滞n -耦合Hindmarsh-Rose神经元模型的同步

Sourav K. Bhowmick, S. Panja
{"title":"时变时滞n -耦合Hindmarsh-Rose神经元模型的同步","authors":"Sourav K. Bhowmick, S. Panja","doi":"10.1109/INDICON.2017.8487581","DOIUrl":null,"url":null,"abstract":"This paper dwells upon the synchronization phenomena in Hindmarsh-Rose (HR) neuron model of $N$ number of neurons with time-varying communication delays between them. By considering a suitable Lyapunov-Krasovskii (L-K) functional, the synchronization criteria is obtained in terms of linear matrix inequality (LMI) for asymptotically stabilizing the error dynamics between the master-slave neuron configuration. The effectiveness of the proposed method is established through the numerical simulations of the neuron model.","PeriodicalId":263943,"journal":{"name":"2017 14th IEEE India Council International Conference (INDICON)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synchronization of N-Coupled Hindmarsh-Rose Neuron Model with Time-Varying Delays\",\"authors\":\"Sourav K. Bhowmick, S. Panja\",\"doi\":\"10.1109/INDICON.2017.8487581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper dwells upon the synchronization phenomena in Hindmarsh-Rose (HR) neuron model of $N$ number of neurons with time-varying communication delays between them. By considering a suitable Lyapunov-Krasovskii (L-K) functional, the synchronization criteria is obtained in terms of linear matrix inequality (LMI) for asymptotically stabilizing the error dynamics between the master-slave neuron configuration. The effectiveness of the proposed method is established through the numerical simulations of the neuron model.\",\"PeriodicalId\":263943,\"journal\":{\"name\":\"2017 14th IEEE India Council International Conference (INDICON)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IEEE India Council International Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2017.8487581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IEEE India Council International Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2017.8487581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了$N$个神经元之间具有时变通信延迟的Hindmarsh-Rose (HR)神经元模型中的同步现象。通过考虑合适的Lyapunov-Krasovskii (L-K)泛函,利用线性矩阵不等式(LMI)得到了主从神经元构型误差动态渐近稳定的同步准则。通过神经元模型的数值模拟,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of N-Coupled Hindmarsh-Rose Neuron Model with Time-Varying Delays
This paper dwells upon the synchronization phenomena in Hindmarsh-Rose (HR) neuron model of $N$ number of neurons with time-varying communication delays between them. By considering a suitable Lyapunov-Krasovskii (L-K) functional, the synchronization criteria is obtained in terms of linear matrix inequality (LMI) for asymptotically stabilizing the error dynamics between the master-slave neuron configuration. The effectiveness of the proposed method is established through the numerical simulations of the neuron model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信