提高轨道跟踪精度,实现地面车辆在非道路环境下更快、更安全的自主导航

J. Gregory, Garrett A. Warnell, Jonathan R. Fink, Satyandra K. Gupta
{"title":"提高轨道跟踪精度,实现地面车辆在非道路环境下更快、更安全的自主导航","authors":"J. Gregory, Garrett A. Warnell, Jonathan R. Fink, Satyandra K. Gupta","doi":"10.1109/SSRR53300.2021.9597858","DOIUrl":null,"url":null,"abstract":"Autonomous navigation in off-road settings is complicated by environment-induced disturbances due to natural phenomena, such as friction and slip. This introduces deviations in trajectory-following capabilities, exacerbates the effects of inevitable understeering and, in the worst case, can lead to unsafe navigation. We anticipate that future systems will need to learn terrain-induced effects efficiently from experiences on-platform, in real-time, to compensate for complex terrain. Toward this vision, we discuss a data-driven approach to improving trajectory tracking accuracy by combining conventional, model-based solutions that use proprioceptive sensor data with online, self-supervised learning of noisy disturbances using exteroceptive data. We investigate the value and challenges of predicting disturbances and computing corresponding command offsets based on the robot's experiences.","PeriodicalId":423263,"journal":{"name":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving Trajectory Tracking Accuracy for Faster and Safer Autonomous Navigation of Ground Vehicles in Off-Road Settings\",\"authors\":\"J. Gregory, Garrett A. Warnell, Jonathan R. Fink, Satyandra K. Gupta\",\"doi\":\"10.1109/SSRR53300.2021.9597858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous navigation in off-road settings is complicated by environment-induced disturbances due to natural phenomena, such as friction and slip. This introduces deviations in trajectory-following capabilities, exacerbates the effects of inevitable understeering and, in the worst case, can lead to unsafe navigation. We anticipate that future systems will need to learn terrain-induced effects efficiently from experiences on-platform, in real-time, to compensate for complex terrain. Toward this vision, we discuss a data-driven approach to improving trajectory tracking accuracy by combining conventional, model-based solutions that use proprioceptive sensor data with online, self-supervised learning of noisy disturbances using exteroceptive data. We investigate the value and challenges of predicting disturbances and computing corresponding command offsets based on the robot's experiences.\",\"PeriodicalId\":423263,\"journal\":{\"name\":\"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR53300.2021.9597858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR53300.2021.9597858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于摩擦和打滑等自然现象引起的环境干扰,使越野环境下的自主导航变得复杂。这导致了轨迹跟踪能力的偏差,加剧了不可避免的转向不足的影响,在最坏的情况下,可能导致不安全的导航。我们预计未来的系统将需要从平台上的实时经验中有效地学习地形诱导效应,以补偿复杂的地形。为了实现这一愿景,我们讨论了一种数据驱动的方法,通过将使用本体感觉传感器数据的传统的基于模型的解决方案与使用外部感觉数据的噪声干扰的在线、自监督学习相结合,来提高轨迹跟踪精度。我们研究了基于机器人经验预测干扰和计算相应的命令偏移量的价值和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Trajectory Tracking Accuracy for Faster and Safer Autonomous Navigation of Ground Vehicles in Off-Road Settings
Autonomous navigation in off-road settings is complicated by environment-induced disturbances due to natural phenomena, such as friction and slip. This introduces deviations in trajectory-following capabilities, exacerbates the effects of inevitable understeering and, in the worst case, can lead to unsafe navigation. We anticipate that future systems will need to learn terrain-induced effects efficiently from experiences on-platform, in real-time, to compensate for complex terrain. Toward this vision, we discuss a data-driven approach to improving trajectory tracking accuracy by combining conventional, model-based solutions that use proprioceptive sensor data with online, self-supervised learning of noisy disturbances using exteroceptive data. We investigate the value and challenges of predicting disturbances and computing corresponding command offsets based on the robot's experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信