记忆横梁的实用梯度下降法

M. V. Nair, P. Dudek
{"title":"记忆横梁的实用梯度下降法","authors":"M. V. Nair, P. Dudek","doi":"10.1109/MEMRISYS.2015.7378392","DOIUrl":null,"url":null,"abstract":"This paper discusses implementations of gradientdescent based learning algorithms on memristive crossbar arrays. The Unregulated Step Descent (USD) is described as a practical algorithm for feed-forward on-line training of large crossbar arrays. It allows fast feed-forward fully parallel on-line hardware based learning, without requiring accurate models of the memristor behaviour and precise control of the programming pulses. The effect of device parameters, training parameters, and device variability on the learning performance of crossbar arrays trained using the USD algorithm has been studied via simulations.","PeriodicalId":159041,"journal":{"name":"2015 International Conference on Memristive Systems (MEMRISYS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Practical gradient-descent for memristive crossbars\",\"authors\":\"M. V. Nair, P. Dudek\",\"doi\":\"10.1109/MEMRISYS.2015.7378392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses implementations of gradientdescent based learning algorithms on memristive crossbar arrays. The Unregulated Step Descent (USD) is described as a practical algorithm for feed-forward on-line training of large crossbar arrays. It allows fast feed-forward fully parallel on-line hardware based learning, without requiring accurate models of the memristor behaviour and precise control of the programming pulses. The effect of device parameters, training parameters, and device variability on the learning performance of crossbar arrays trained using the USD algorithm has been studied via simulations.\",\"PeriodicalId\":159041,\"journal\":{\"name\":\"2015 International Conference on Memristive Systems (MEMRISYS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Memristive Systems (MEMRISYS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMRISYS.2015.7378392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Memristive Systems (MEMRISYS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMRISYS.2015.7378392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了基于梯度下降的学习算法在记忆交叉棒阵列上的实现。无调节阶跃下降(USD)是一种实用的大型横杆阵前馈在线训练算法。它允许基于硬件的快速前馈全并行在线学习,而不需要精确的忆阻器行为模型和编程脉冲的精确控制。通过仿真研究了设备参数、训练参数和设备可变性对使用USD算法训练的交叉棒阵列学习性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical gradient-descent for memristive crossbars
This paper discusses implementations of gradientdescent based learning algorithms on memristive crossbar arrays. The Unregulated Step Descent (USD) is described as a practical algorithm for feed-forward on-line training of large crossbar arrays. It allows fast feed-forward fully parallel on-line hardware based learning, without requiring accurate models of the memristor behaviour and precise control of the programming pulses. The effect of device parameters, training parameters, and device variability on the learning performance of crossbar arrays trained using the USD algorithm has been studied via simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信