{"title":"AI时代尺度非易失性存储器的材料筛选方法","authors":"N. Lanzillo, R. Robison","doi":"10.1109/ans47466.2019.8963744","DOIUrl":null,"url":null,"abstract":"We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments","PeriodicalId":375888,"journal":{"name":"2019 IEEE Albany Nanotechnology Symposium (ANS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era\",\"authors\":\"N. Lanzillo, R. Robison\",\"doi\":\"10.1109/ans47466.2019.8963744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments\",\"PeriodicalId\":375888,\"journal\":{\"name\":\"2019 IEEE Albany Nanotechnology Symposium (ANS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Albany Nanotechnology Symposium (ANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ans47466.2019.8963744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Albany Nanotechnology Symposium (ANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ans47466.2019.8963744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era
We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments