基于微扰反馈控制的登月任务非线性最优闭环制导律

H. Afshari, N. Rostamy, I. S. Nejad, A. Novinzadeh
{"title":"基于微扰反馈控制的登月任务非线性最优闭环制导律","authors":"H. Afshari, N. Rostamy, I. S. Nejad, A. Novinzadeh","doi":"10.15866/IREPHY.V9I1.6156","DOIUrl":null,"url":null,"abstract":"An optimal trajectory design of a nonlinear lunar landing mission for soft landing on the moon by minimizing the landing time is reported in this paper. It is an exact solution to the two-point boundary value problem which determines the state variables and optimal control history in the open-loop form by satisfying the terminal conditions. Furthermore, in this paper the lunar landing mission is closed-loop against the environment disturbances by using of optimal open-loop solution and applying an analytical method named perturbation feedback control. By using the perturbation feedback method based on the calculus of variations theory, one can compute the feedback control law for nonlinear lunar landing mission in each instant of time. This law is a function of states perturbation and constraints perturbation which can minimize the landing time and satisfy the terminal conditions appropriately.","PeriodicalId":448231,"journal":{"name":"International Review of Physics","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear Optimal Closed-Loop Guidance Law for Lunar Landing Mission Using Perturbation Feedback Control\",\"authors\":\"H. Afshari, N. Rostamy, I. S. Nejad, A. Novinzadeh\",\"doi\":\"10.15866/IREPHY.V9I1.6156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimal trajectory design of a nonlinear lunar landing mission for soft landing on the moon by minimizing the landing time is reported in this paper. It is an exact solution to the two-point boundary value problem which determines the state variables and optimal control history in the open-loop form by satisfying the terminal conditions. Furthermore, in this paper the lunar landing mission is closed-loop against the environment disturbances by using of optimal open-loop solution and applying an analytical method named perturbation feedback control. By using the perturbation feedback method based on the calculus of variations theory, one can compute the feedback control law for nonlinear lunar landing mission in each instant of time. This law is a function of states perturbation and constraints perturbation which can minimize the landing time and satisfy the terminal conditions appropriately.\",\"PeriodicalId\":448231,\"journal\":{\"name\":\"International Review of Physics\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREPHY.V9I1.6156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREPHY.V9I1.6156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种以最小化着陆时间为目标的非线性月球软着陆任务的最优轨迹设计方法。这是两点边值问题的精确解,该问题通过满足终端条件来确定开环形式的状态变量和最优控制历史。在此基础上,利用最优开环解和摄动反馈控制的解析方法,实现了对环境扰动的闭环控制。利用基于变分理论的摄动反馈方法,可以计算出非线性登月任务在每个时刻的反馈控制律。该律是状态摄动和约束摄动的函数,能使着陆时间最小化并适当满足终端条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Optimal Closed-Loop Guidance Law for Lunar Landing Mission Using Perturbation Feedback Control
An optimal trajectory design of a nonlinear lunar landing mission for soft landing on the moon by minimizing the landing time is reported in this paper. It is an exact solution to the two-point boundary value problem which determines the state variables and optimal control history in the open-loop form by satisfying the terminal conditions. Furthermore, in this paper the lunar landing mission is closed-loop against the environment disturbances by using of optimal open-loop solution and applying an analytical method named perturbation feedback control. By using the perturbation feedback method based on the calculus of variations theory, one can compute the feedback control law for nonlinear lunar landing mission in each instant of time. This law is a function of states perturbation and constraints perturbation which can minimize the landing time and satisfy the terminal conditions appropriately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信