仿人机器人探测和攀爬梯子的仿真

Prashanta Gyawali, J. McGough
{"title":"仿人机器人探测和攀爬梯子的仿真","authors":"Prashanta Gyawali, J. McGough","doi":"10.1109/EIT.2013.6632710","DOIUrl":null,"url":null,"abstract":"The most recent DARPA challenge presents an industrial accident scenerio for a humanoid robot to traverse and then perform human oriented tasks. In the fifth stage of the challenge, the robot must climb a wall mounted metal rung ladder. To accomplish this task, the robot must first recognize and localize the ladder prior to grasping and climbing. This paper presents the localization of the rungs using point cloud data from a simulated Microsoft Kinect sensor. It also presents grasping and climbing manuveur using PR2 Robot. The basic approach is to first segment out the background planes. We apply a voxel grid filter to make the computation faster. Then using the RANSAC algorithm, lines that represent the legs and the interior rung midline are extracted. Vertical lines are thrown away and only the lines that represent the rungs are retained. The center of the computed line is our estimated location for the rung centroid. We then can use the centroid information for the PR2 grasping.","PeriodicalId":201202,"journal":{"name":"IEEE International Conference on Electro-Information Technology , EIT 2013","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simulation of detecting and climbing a ladder for a humanoid robot\",\"authors\":\"Prashanta Gyawali, J. McGough\",\"doi\":\"10.1109/EIT.2013.6632710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most recent DARPA challenge presents an industrial accident scenerio for a humanoid robot to traverse and then perform human oriented tasks. In the fifth stage of the challenge, the robot must climb a wall mounted metal rung ladder. To accomplish this task, the robot must first recognize and localize the ladder prior to grasping and climbing. This paper presents the localization of the rungs using point cloud data from a simulated Microsoft Kinect sensor. It also presents grasping and climbing manuveur using PR2 Robot. The basic approach is to first segment out the background planes. We apply a voxel grid filter to make the computation faster. Then using the RANSAC algorithm, lines that represent the legs and the interior rung midline are extracted. Vertical lines are thrown away and only the lines that represent the rungs are retained. The center of the computed line is our estimated location for the rung centroid. We then can use the centroid information for the PR2 grasping.\",\"PeriodicalId\":201202,\"journal\":{\"name\":\"IEEE International Conference on Electro-Information Technology , EIT 2013\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Electro-Information Technology , EIT 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2013.6632710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Electro-Information Technology , EIT 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2013.6632710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

DARPA最近的挑战展示了一个工业事故场景,让人形机器人穿越并执行面向人类的任务。在挑战的第五阶段,机器人必须爬上一个安装在墙上的金属阶梯。为了完成这项任务,机器人必须首先识别和定位梯子,然后才能抓取和攀爬。本文介绍了利用模拟微软Kinect传感器的点云数据来定位梯级的方法。介绍了PR2机器人的抓取和攀爬动作。基本的方法是首先分割出背景平面。我们使用体素网格过滤器使计算速度更快。然后利用RANSAC算法提取代表腿的线和内部横条中线。竖线被丢弃,只保留代表梯级的线条。计算线的中心是我们估计的阶形心的位置。然后我们可以使用质心信息进行PR2抓取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of detecting and climbing a ladder for a humanoid robot
The most recent DARPA challenge presents an industrial accident scenerio for a humanoid robot to traverse and then perform human oriented tasks. In the fifth stage of the challenge, the robot must climb a wall mounted metal rung ladder. To accomplish this task, the robot must first recognize and localize the ladder prior to grasping and climbing. This paper presents the localization of the rungs using point cloud data from a simulated Microsoft Kinect sensor. It also presents grasping and climbing manuveur using PR2 Robot. The basic approach is to first segment out the background planes. We apply a voxel grid filter to make the computation faster. Then using the RANSAC algorithm, lines that represent the legs and the interior rung midline are extracted. Vertical lines are thrown away and only the lines that represent the rungs are retained. The center of the computed line is our estimated location for the rung centroid. We then can use the centroid information for the PR2 grasping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信