用于深亚微米技术的低功耗高性能数字电路

G. Reza Chaji, S. M. Fakhraie
{"title":"用于深亚微米技术的低功耗高性能数字电路","authors":"G. Reza Chaji, S. M. Fakhraie","doi":"10.1109/NEWCAS.2005.1496684","DOIUrl":null,"url":null,"abstract":"This paper presents a novel digital circuit design methodology that can support high-performance and low-power applications. In this method, reusing past internal voltages, signals are charged to Vdd/2 during the pre-charge cycle, so that the voltage of a signal is changed by just Vdd/2 during the evaluation cycle, resulting in a significant reduction in power consumption and propagation delay. The simulation results performed in 0.18/spl mu/m CMOS technology, demonstrate that the new circuit has three times improvement in terms of propagation delay in comparison to the equivalent domino dynamic logics. More importantly, its power consumption is 2.4 times less than that of the domino logics counterpart.","PeriodicalId":131387,"journal":{"name":"The 3rd International IEEE-NEWCAS Conference, 2005.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low-power high-performance digital circuit for deep submicron technologies\",\"authors\":\"G. Reza Chaji, S. M. Fakhraie\",\"doi\":\"10.1109/NEWCAS.2005.1496684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel digital circuit design methodology that can support high-performance and low-power applications. In this method, reusing past internal voltages, signals are charged to Vdd/2 during the pre-charge cycle, so that the voltage of a signal is changed by just Vdd/2 during the evaluation cycle, resulting in a significant reduction in power consumption and propagation delay. The simulation results performed in 0.18/spl mu/m CMOS technology, demonstrate that the new circuit has three times improvement in terms of propagation delay in comparison to the equivalent domino dynamic logics. More importantly, its power consumption is 2.4 times less than that of the domino logics counterpart.\",\"PeriodicalId\":131387,\"journal\":{\"name\":\"The 3rd International IEEE-NEWCAS Conference, 2005.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd International IEEE-NEWCAS Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2005.1496684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International IEEE-NEWCAS Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2005.1496684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的数字电路设计方法,可以支持高性能和低功耗的应用。该方法利用过去的内部电压,在预充电周期内将信号充电到Vdd/2,使得在评估周期内信号电压的变化仅为Vdd/2,从而显著降低了功耗和传播延迟。在0.18/spl mu/m CMOS技术下进行的仿真结果表明,与等效的多米诺动态逻辑相比,新电路的传播延迟提高了三倍。更重要的是,它的功耗比对应的domino逻辑低2.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low-power high-performance digital circuit for deep submicron technologies
This paper presents a novel digital circuit design methodology that can support high-performance and low-power applications. In this method, reusing past internal voltages, signals are charged to Vdd/2 during the pre-charge cycle, so that the voltage of a signal is changed by just Vdd/2 during the evaluation cycle, resulting in a significant reduction in power consumption and propagation delay. The simulation results performed in 0.18/spl mu/m CMOS technology, demonstrate that the new circuit has three times improvement in terms of propagation delay in comparison to the equivalent domino dynamic logics. More importantly, its power consumption is 2.4 times less than that of the domino logics counterpart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信