T. Suzuki, H. Yamauchi, Y. Yamagami, K. Satomi, H. Akamatsu
{"title":"一种稳定的SRAM单元设计,可同时抵抗读写干扰","authors":"T. Suzuki, H. Yamauchi, Y. Yamagami, K. Satomi, H. Akamatsu","doi":"10.1109/VLSIC.2006.1705287","DOIUrl":null,"url":null,"abstract":"A guarantee obligation of keeping the cell-margin against a simultaneously read and write (R/W) disturbed accesses in the same column is required to a 2-port SRAM. We verified that it is difficult to provide these margins without any decrease in cell-current and any increase in cell-area penalty only by using the previously proposed techniques so far. To solve this, we have developed the new cell design technology for an 8-Tr 2-port cell in a 65-nm CMOS technology and have demonstrated that the R/W margins can be improved by 45%/70%, respectively at 0.9V, and the cell-size can be reduced by 20% compared with the conventional column-based Vdd control. Another 7-Tr cell which can reduce cell-area by 31% has been also demonstrated","PeriodicalId":366835,"journal":{"name":"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A Stable SRAM Cell Design Against Simultaneously R/W Disturbed Accesses\",\"authors\":\"T. Suzuki, H. Yamauchi, Y. Yamagami, K. Satomi, H. Akamatsu\",\"doi\":\"10.1109/VLSIC.2006.1705287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A guarantee obligation of keeping the cell-margin against a simultaneously read and write (R/W) disturbed accesses in the same column is required to a 2-port SRAM. We verified that it is difficult to provide these margins without any decrease in cell-current and any increase in cell-area penalty only by using the previously proposed techniques so far. To solve this, we have developed the new cell design technology for an 8-Tr 2-port cell in a 65-nm CMOS technology and have demonstrated that the R/W margins can be improved by 45%/70%, respectively at 0.9V, and the cell-size can be reduced by 20% compared with the conventional column-based Vdd control. Another 7-Tr cell which can reduce cell-area by 31% has been also demonstrated\",\"PeriodicalId\":366835,\"journal\":{\"name\":\"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2006.1705287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2006.1705287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Stable SRAM Cell Design Against Simultaneously R/W Disturbed Accesses
A guarantee obligation of keeping the cell-margin against a simultaneously read and write (R/W) disturbed accesses in the same column is required to a 2-port SRAM. We verified that it is difficult to provide these margins without any decrease in cell-current and any increase in cell-area penalty only by using the previously proposed techniques so far. To solve this, we have developed the new cell design technology for an 8-Tr 2-port cell in a 65-nm CMOS technology and have demonstrated that the R/W margins can be improved by 45%/70%, respectively at 0.9V, and the cell-size can be reduced by 20% compared with the conventional column-based Vdd control. Another 7-Tr cell which can reduce cell-area by 31% has been also demonstrated