复杂环境下自主移动机器人社会感知轨迹规划系统研究

V. Nguyen, Van Bay Hoang, C. My, Le Minh Kien, Xuan-Tung Truong
{"title":"复杂环境下自主移动机器人社会感知轨迹规划系统研究","authors":"V. Nguyen, Van Bay Hoang, C. My, Le Minh Kien, Xuan-Tung Truong","doi":"10.1109/NICS51282.2020.9335845","DOIUrl":null,"url":null,"abstract":"This paper proposes a socio-spatio-temporal human characteristics-based socially aware navigation framework that enables mobile service robots to both approach and avoid humans in dynamic social environments. The proposed framework consists of two major stages. In the first stage, the robots estimate the approaching poses of the robot to the human or human group. In the second stage, the proposed framework will estimate an optimal robot's trajectory using the online trajectory planning technique. The control command extracted from the optimal trajectory is then utilized to drive the mobile robot to approach the individual humans or human groups, while avoiding regular obstacles, humans and human groups during the robot's navigation. The proposed framework is verified in the Gazebo-based simulation environment. The simulation results illustrate that, the mobile robots equipped with our proposed framework are able to safely and socially approach and avoid individual humans and human groups, providing socially acceptable behavior for the robots.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Toward socially aware trajectory planning system for autonomous mobile robots in complex environments\",\"authors\":\"V. Nguyen, Van Bay Hoang, C. My, Le Minh Kien, Xuan-Tung Truong\",\"doi\":\"10.1109/NICS51282.2020.9335845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a socio-spatio-temporal human characteristics-based socially aware navigation framework that enables mobile service robots to both approach and avoid humans in dynamic social environments. The proposed framework consists of two major stages. In the first stage, the robots estimate the approaching poses of the robot to the human or human group. In the second stage, the proposed framework will estimate an optimal robot's trajectory using the online trajectory planning technique. The control command extracted from the optimal trajectory is then utilized to drive the mobile robot to approach the individual humans or human groups, while avoiding regular obstacles, humans and human groups during the robot's navigation. The proposed framework is verified in the Gazebo-based simulation environment. The simulation results illustrate that, the mobile robots equipped with our proposed framework are able to safely and socially approach and avoid individual humans and human groups, providing socially acceptable behavior for the robots.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于人类社会时空特征的社会感知导航框架,使移动服务机器人能够在动态社会环境中接近和避开人类。拟议的框架包括两个主要阶段。在第一阶段,机器人估计机器人对人类或人类群体的接近姿态。在第二阶段,提出的框架将使用在线轨迹规划技术估计机器人的最优轨迹。然后利用从最优轨迹中提取的控制命令驱动移动机器人接近个体或群体,同时在机器人导航过程中避开规则障碍物、人类和群体。在基于gazebo的仿真环境中对该框架进行了验证。仿真结果表明,配备我们提出的框架的移动机器人能够安全、社会地接近和避开个人和人类群体,为机器人提供社会可接受的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward socially aware trajectory planning system for autonomous mobile robots in complex environments
This paper proposes a socio-spatio-temporal human characteristics-based socially aware navigation framework that enables mobile service robots to both approach and avoid humans in dynamic social environments. The proposed framework consists of two major stages. In the first stage, the robots estimate the approaching poses of the robot to the human or human group. In the second stage, the proposed framework will estimate an optimal robot's trajectory using the online trajectory planning technique. The control command extracted from the optimal trajectory is then utilized to drive the mobile robot to approach the individual humans or human groups, while avoiding regular obstacles, humans and human groups during the robot's navigation. The proposed framework is verified in the Gazebo-based simulation environment. The simulation results illustrate that, the mobile robots equipped with our proposed framework are able to safely and socially approach and avoid individual humans and human groups, providing socially acceptable behavior for the robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信