期权预期收益与跳跃风险溢价结构

Nicole Branger, Alexandra Hansis, Christian Schlag
{"title":"期权预期收益与跳跃风险溢价结构","authors":"Nicole Branger, Alexandra Hansis, Christian Schlag","doi":"10.2139/ssrn.1340575","DOIUrl":null,"url":null,"abstract":"The paper analyzes expected option returns in models with stochastic volatility and jumps. A comparison with empirically documented returns shows that the ability of the model to explain these returns can differ significantly depending on the holding period and depending on whether we consider call or put options. Furthermore, we show that the size of the jump risk premium and its decomposition into a premium for jump intensity risk, jump size risk, and jump variance risk has a significant impact on expected option returns. In particular, expected returns on OTM calls can even become negative if e.g. jump variance risk is priced.","PeriodicalId":132549,"journal":{"name":"EFA 2009 Bergen Meetings (Archive)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Expected Option Returns and the Structure of Jump Risk Premia\",\"authors\":\"Nicole Branger, Alexandra Hansis, Christian Schlag\",\"doi\":\"10.2139/ssrn.1340575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper analyzes expected option returns in models with stochastic volatility and jumps. A comparison with empirically documented returns shows that the ability of the model to explain these returns can differ significantly depending on the holding period and depending on whether we consider call or put options. Furthermore, we show that the size of the jump risk premium and its decomposition into a premium for jump intensity risk, jump size risk, and jump variance risk has a significant impact on expected option returns. In particular, expected returns on OTM calls can even become negative if e.g. jump variance risk is priced.\",\"PeriodicalId\":132549,\"journal\":{\"name\":\"EFA 2009 Bergen Meetings (Archive)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EFA 2009 Bergen Meetings (Archive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1340575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EFA 2009 Bergen Meetings (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1340575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文分析了随机波动和随机跳跃模型下的期望期权收益。与经验记录的回报的比较表明,模型解释这些回报的能力可能会因持有期限和我们是否考虑看涨期权或看跌期权而有很大差异。进一步,我们证明了跳跃风险溢价的大小及其分解为跳跃强度风险、跳跃大小风险和跳跃方差风险的溢价对期望期权收益有显著影响。特别是,如果跳跃方差风险被定价,OTM看涨期权的预期收益甚至可能变为负值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected Option Returns and the Structure of Jump Risk Premia
The paper analyzes expected option returns in models with stochastic volatility and jumps. A comparison with empirically documented returns shows that the ability of the model to explain these returns can differ significantly depending on the holding period and depending on whether we consider call or put options. Furthermore, we show that the size of the jump risk premium and its decomposition into a premium for jump intensity risk, jump size risk, and jump variance risk has a significant impact on expected option returns. In particular, expected returns on OTM calls can even become negative if e.g. jump variance risk is priced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信