多通道盲源分离的时间反卷积CNMF

Thadeu L. B. Dias, L. Biscainho, W. Martins
{"title":"多通道盲源分离的时间反卷积CNMF","authors":"Thadeu L. B. Dias, L. Biscainho, W. Martins","doi":"10.14209/SBRT.2019.1570557364","DOIUrl":null,"url":null,"abstract":"This paper tackles multichannel separation of convolutive mixtures of audio sources by using complex-valued nonnegative matrix factorization (CNMF). We extend models proposed by previous works and show that one may tailor advanced single-channel NMF techniques, such as the deconvolutive NMF, to the multichannel factorization scheme. Additionally, we propose a regularized cost function that enables the user to control the distribution of the estimated parameters without significantly increasing the underlying computational cost. We also develop an optimization framework compatible with previous related works. Our simulations show that the proposed deconvolutive model offers advantages when compared to the simple NMF, and that the regularization is able to steer the parameters towards a solution with desirable properties. Keywords— Blind source separation, convolutive mixture, NMF, deconvolutive NMF","PeriodicalId":135552,"journal":{"name":"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-Deconvolutive CNMF for Multichannel Blind Source Separation\",\"authors\":\"Thadeu L. B. Dias, L. Biscainho, W. Martins\",\"doi\":\"10.14209/SBRT.2019.1570557364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles multichannel separation of convolutive mixtures of audio sources by using complex-valued nonnegative matrix factorization (CNMF). We extend models proposed by previous works and show that one may tailor advanced single-channel NMF techniques, such as the deconvolutive NMF, to the multichannel factorization scheme. Additionally, we propose a regularized cost function that enables the user to control the distribution of the estimated parameters without significantly increasing the underlying computational cost. We also develop an optimization framework compatible with previous related works. Our simulations show that the proposed deconvolutive model offers advantages when compared to the simple NMF, and that the regularization is able to steer the parameters towards a solution with desirable properties. Keywords— Blind source separation, convolutive mixture, NMF, deconvolutive NMF\",\"PeriodicalId\":135552,\"journal\":{\"name\":\"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14209/SBRT.2019.1570557364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14209/SBRT.2019.1570557364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用复值非负矩阵分解(CNMF)方法解决了音频源卷积混合的多通道分离问题。我们扩展了先前工作提出的模型,并表明可以将先进的单通道NMF技术,如反卷积NMF,定制为多通道分解方案。此外,我们提出了一个正则化的成本函数,使用户能够控制估计参数的分布,而不会显著增加底层的计算成本。我们还开发了一个与以往相关工作兼容的优化框架。我们的模拟表明,与简单的NMF相比,所提出的反卷积模型具有优势,并且正则化能够将参数导向具有理想特性的解决方案。关键词:盲源分离,卷积混合,NMF,反卷积NMF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Deconvolutive CNMF for Multichannel Blind Source Separation
This paper tackles multichannel separation of convolutive mixtures of audio sources by using complex-valued nonnegative matrix factorization (CNMF). We extend models proposed by previous works and show that one may tailor advanced single-channel NMF techniques, such as the deconvolutive NMF, to the multichannel factorization scheme. Additionally, we propose a regularized cost function that enables the user to control the distribution of the estimated parameters without significantly increasing the underlying computational cost. We also develop an optimization framework compatible with previous related works. Our simulations show that the proposed deconvolutive model offers advantages when compared to the simple NMF, and that the regularization is able to steer the parameters towards a solution with desirable properties. Keywords— Blind source separation, convolutive mixture, NMF, deconvolutive NMF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信