神经网络在电压稳定性评估中的预处理和训练效果

A. Francis, T. Joseph, L. Salim
{"title":"神经网络在电压稳定性评估中的预处理和训练效果","authors":"A. Francis, T. Joseph, L. Salim","doi":"10.1109/IMAC4S.2013.6526404","DOIUrl":null,"url":null,"abstract":"We present the effects of preprocessing and training parameters in stability index computation using neural network. Two method of index computation was done. In first method active and reactive power are given as net inputs and bus voltage is set as target. From the predicted bus voltage, stability index is computed. In the second method P, Q, V and power factor is given as input and L-index is given as the net output. We show that preprocessing, the raw data with more number of input parameters makes more effective index computation. We also propose the optimum training parameters of the network, based on experimental observation.","PeriodicalId":403064,"journal":{"name":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preprocessing and training effects in voltage stability assessment using neural networks\",\"authors\":\"A. Francis, T. Joseph, L. Salim\",\"doi\":\"10.1109/IMAC4S.2013.6526404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the effects of preprocessing and training parameters in stability index computation using neural network. Two method of index computation was done. In first method active and reactive power are given as net inputs and bus voltage is set as target. From the predicted bus voltage, stability index is computed. In the second method P, Q, V and power factor is given as input and L-index is given as the net output. We show that preprocessing, the raw data with more number of input parameters makes more effective index computation. We also propose the optimum training parameters of the network, based on experimental observation.\",\"PeriodicalId\":403064,\"journal\":{\"name\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAC4S.2013.6526404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAC4S.2013.6526404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

讨论了预处理和训练参数对神经网络稳定性指标计算的影响。给出了两种指标计算方法。第一种方法以有功和无功功率为净输入,以母线电压为目标。根据预测的母线电压,计算出稳定指标。在第二种方法中,P、Q、V和功率因数作为输入,l指数作为净输出。结果表明,对输入参数较多的原始数据进行预处理,可以提高索引计算的效率。在实验观察的基础上提出了网络的最优训练参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preprocessing and training effects in voltage stability assessment using neural networks
We present the effects of preprocessing and training parameters in stability index computation using neural network. Two method of index computation was done. In first method active and reactive power are given as net inputs and bus voltage is set as target. From the predicted bus voltage, stability index is computed. In the second method P, Q, V and power factor is given as input and L-index is given as the net output. We show that preprocessing, the raw data with more number of input parameters makes more effective index computation. We also propose the optimum training parameters of the network, based on experimental observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信