改进迭代学习控制中样本间行为的多速率状态跟踪

W. Ohnishi, Nard Strijbosch, T. Oomen
{"title":"改进迭代学习控制中样本间行为的多速率状态跟踪","authors":"W. Ohnishi, Nard Strijbosch, T. Oomen","doi":"10.1109/ICM46511.2021.9385661","DOIUrl":null,"url":null,"abstract":"Iterative learning control (ILC) enables highperformance output tracking at sampling instances for systems that perform repetitive tasks. The aim of this paper is to present a state tracking ILC framework that reduces oscillatory intersample behavior often encountered in output tracking ILC. A multirate inversion is performed to achieve state tracking in ILC, which achieves perfect state tracking at every $n$ samples, where $n$ denotes system order. Consequently, this improves the intersample tracking performance. Moreover, convergence criteria based on frequency response data are derived and exploited in a design approach. The approach is successfully applied to a motion system confirming improved intersample tracking accuracy compared to standard frequency domain ILC.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multirate State Tracking for Improving Intersample Behavior in Iterative Learning Control\",\"authors\":\"W. Ohnishi, Nard Strijbosch, T. Oomen\",\"doi\":\"10.1109/ICM46511.2021.9385661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative learning control (ILC) enables highperformance output tracking at sampling instances for systems that perform repetitive tasks. The aim of this paper is to present a state tracking ILC framework that reduces oscillatory intersample behavior often encountered in output tracking ILC. A multirate inversion is performed to achieve state tracking in ILC, which achieves perfect state tracking at every $n$ samples, where $n$ denotes system order. Consequently, this improves the intersample tracking performance. Moreover, convergence criteria based on frequency response data are derived and exploited in a design approach. The approach is successfully applied to a motion system confirming improved intersample tracking accuracy compared to standard frequency domain ILC.\",\"PeriodicalId\":373423,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM46511.2021.9385661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

迭代学习控制(ILC)可以在执行重复任务的系统的采样实例上实现高性能输出跟踪。本文的目的是提出一种状态跟踪ILC框架,以减少输出跟踪ILC中经常遇到的振荡样间行为。通过多速率反演实现ILC的状态跟踪,实现了每n个样本的完美状态跟踪,其中n为系统阶数。因此,这提高了样本间跟踪性能。此外,还推导了基于频率响应数据的收敛准则,并在设计方法中加以利用。该方法成功地应用于一个运动系统,与标准频域ILC相比,该方法提高了采样间跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multirate State Tracking for Improving Intersample Behavior in Iterative Learning Control
Iterative learning control (ILC) enables highperformance output tracking at sampling instances for systems that perform repetitive tasks. The aim of this paper is to present a state tracking ILC framework that reduces oscillatory intersample behavior often encountered in output tracking ILC. A multirate inversion is performed to achieve state tracking in ILC, which achieves perfect state tracking at every $n$ samples, where $n$ denotes system order. Consequently, this improves the intersample tracking performance. Moreover, convergence criteria based on frequency response data are derived and exploited in a design approach. The approach is successfully applied to a motion system confirming improved intersample tracking accuracy compared to standard frequency domain ILC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信