{"title":"运动非冗余并联机构模块化建模的李群方法","authors":"A. Müller","doi":"10.1115/detc2019-98283","DOIUrl":null,"url":null,"abstract":"\n Parallel kinematics manupulators (PKM) are established robotic systems. Yet there is no established modeling approach that takes into account the special kinematics of the (usually structurally identical) limbs. In this paper a modeling approach is proposed that accounts for the special kinematics and topology of PKM. It makes use of modern Lie group formulations for rigid body systems that admits efficient description independent of modeling conventions. A task space formulation is presented that can be directly used for model-based control purposes.","PeriodicalId":338372,"journal":{"name":"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lie Group Approach to the Modular Modeling of Kinematically Non-Redundant Parallel Mechanisms\",\"authors\":\"A. Müller\",\"doi\":\"10.1115/detc2019-98283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Parallel kinematics manupulators (PKM) are established robotic systems. Yet there is no established modeling approach that takes into account the special kinematics of the (usually structurally identical) limbs. In this paper a modeling approach is proposed that accounts for the special kinematics and topology of PKM. It makes use of modern Lie group formulations for rigid body systems that admits efficient description independent of modeling conventions. A task space formulation is presented that can be directly used for model-based control purposes.\",\"PeriodicalId\":338372,\"journal\":{\"name\":\"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lie Group Approach to the Modular Modeling of Kinematically Non-Redundant Parallel Mechanisms
Parallel kinematics manupulators (PKM) are established robotic systems. Yet there is no established modeling approach that takes into account the special kinematics of the (usually structurally identical) limbs. In this paper a modeling approach is proposed that accounts for the special kinematics and topology of PKM. It makes use of modern Lie group formulations for rigid body systems that admits efficient description independent of modeling conventions. A task space formulation is presented that can be directly used for model-based control purposes.