运动非冗余并联机构模块化建模的李群方法

A. Müller
{"title":"运动非冗余并联机构模块化建模的李群方法","authors":"A. Müller","doi":"10.1115/detc2019-98283","DOIUrl":null,"url":null,"abstract":"\n Parallel kinematics manupulators (PKM) are established robotic systems. Yet there is no established modeling approach that takes into account the special kinematics of the (usually structurally identical) limbs. In this paper a modeling approach is proposed that accounts for the special kinematics and topology of PKM. It makes use of modern Lie group formulations for rigid body systems that admits efficient description independent of modeling conventions. A task space formulation is presented that can be directly used for model-based control purposes.","PeriodicalId":338372,"journal":{"name":"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lie Group Approach to the Modular Modeling of Kinematically Non-Redundant Parallel Mechanisms\",\"authors\":\"A. Müller\",\"doi\":\"10.1115/detc2019-98283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Parallel kinematics manupulators (PKM) are established robotic systems. Yet there is no established modeling approach that takes into account the special kinematics of the (usually structurally identical) limbs. In this paper a modeling approach is proposed that accounts for the special kinematics and topology of PKM. It makes use of modern Lie group formulations for rigid body systems that admits efficient description independent of modeling conventions. A task space formulation is presented that can be directly used for model-based control purposes.\",\"PeriodicalId\":338372,\"journal\":{\"name\":\"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

并联机械手(PKM)是一种成熟的机器人系统。然而,目前还没有成熟的建模方法考虑到肢体(通常结构相同)的特殊运动学。本文提出了一种考虑PKM特殊的运动学和拓扑结构的建模方法。它利用现代李群公式的刚体系统,承认有效的描述独立于建模惯例。提出了一种任务空间公式,可直接用于基于模型的控制目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lie Group Approach to the Modular Modeling of Kinematically Non-Redundant Parallel Mechanisms
Parallel kinematics manupulators (PKM) are established robotic systems. Yet there is no established modeling approach that takes into account the special kinematics of the (usually structurally identical) limbs. In this paper a modeling approach is proposed that accounts for the special kinematics and topology of PKM. It makes use of modern Lie group formulations for rigid body systems that admits efficient description independent of modeling conventions. A task space formulation is presented that can be directly used for model-based control purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信