{"title":"辣根脱水热风干燥动力学的实证模拟","authors":"Mukesh Guragain, P. Mitra","doi":"10.5296/jfi.v4i1.17152","DOIUrl":null,"url":null,"abstract":"The preservation of perishable horseradish crop is essential to increase the shelf-life and supply year-round. Hot air-drying method is commercially viable for preserving fruits and vegetables. However, drying conditions such as drying temperature affect the drying kinetic and the final quality of dried products. It is necessary to understand how drying temperature and blanching affect the drying kinetics of horseradish for the prediction of the right drying conditions. The objective of this study was to investigate the hot air-drying kinetics by fitting commonly used five empirical models to establish right hot air-drying conditions for drying of horseradish. The unblanched (control, C) and blanched (B) horseradish slices were dried at 50, 70 and 85℃ until reaching to an equilibrium moisture content (db). The moisture reduction data were collected at certain intervals and the moisture content data were converted to moisture ratio (MR). The MR data were used to predict the drying kinetics of horseradish drying using five empirical models. The results indicated that drying kinetics followed the constant drying rate period and falling rate period for all three drying temperatures. The five tested models were able to predict the drying kinetics with R2 (0.96-0.99) and RMSE (0.01-0.06) depending on the models and blanching. However, diffusion approach model was the best fitted model securing the highest R2 and the lowest RMSE. The findings of this research are expected to be significantly important for horseradish drying effectively.","PeriodicalId":313202,"journal":{"name":"Journal of Food Industry","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Empirical Modeling of Hot Air-Drying Kinetics of Horseradish Dehydration\",\"authors\":\"Mukesh Guragain, P. Mitra\",\"doi\":\"10.5296/jfi.v4i1.17152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preservation of perishable horseradish crop is essential to increase the shelf-life and supply year-round. Hot air-drying method is commercially viable for preserving fruits and vegetables. However, drying conditions such as drying temperature affect the drying kinetic and the final quality of dried products. It is necessary to understand how drying temperature and blanching affect the drying kinetics of horseradish for the prediction of the right drying conditions. The objective of this study was to investigate the hot air-drying kinetics by fitting commonly used five empirical models to establish right hot air-drying conditions for drying of horseradish. The unblanched (control, C) and blanched (B) horseradish slices were dried at 50, 70 and 85℃ until reaching to an equilibrium moisture content (db). The moisture reduction data were collected at certain intervals and the moisture content data were converted to moisture ratio (MR). The MR data were used to predict the drying kinetics of horseradish drying using five empirical models. The results indicated that drying kinetics followed the constant drying rate period and falling rate period for all three drying temperatures. The five tested models were able to predict the drying kinetics with R2 (0.96-0.99) and RMSE (0.01-0.06) depending on the models and blanching. However, diffusion approach model was the best fitted model securing the highest R2 and the lowest RMSE. The findings of this research are expected to be significantly important for horseradish drying effectively.\",\"PeriodicalId\":313202,\"journal\":{\"name\":\"Journal of Food Industry\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5296/jfi.v4i1.17152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5296/jfi.v4i1.17152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical Modeling of Hot Air-Drying Kinetics of Horseradish Dehydration
The preservation of perishable horseradish crop is essential to increase the shelf-life and supply year-round. Hot air-drying method is commercially viable for preserving fruits and vegetables. However, drying conditions such as drying temperature affect the drying kinetic and the final quality of dried products. It is necessary to understand how drying temperature and blanching affect the drying kinetics of horseradish for the prediction of the right drying conditions. The objective of this study was to investigate the hot air-drying kinetics by fitting commonly used five empirical models to establish right hot air-drying conditions for drying of horseradish. The unblanched (control, C) and blanched (B) horseradish slices were dried at 50, 70 and 85℃ until reaching to an equilibrium moisture content (db). The moisture reduction data were collected at certain intervals and the moisture content data were converted to moisture ratio (MR). The MR data were used to predict the drying kinetics of horseradish drying using five empirical models. The results indicated that drying kinetics followed the constant drying rate period and falling rate period for all three drying temperatures. The five tested models were able to predict the drying kinetics with R2 (0.96-0.99) and RMSE (0.01-0.06) depending on the models and blanching. However, diffusion approach model was the best fitted model securing the highest R2 and the lowest RMSE. The findings of this research are expected to be significantly important for horseradish drying effectively.