现场可编程系统的分层划分

V. Chan, D. Lewis
{"title":"现场可编程系统的分层划分","authors":"V. Chan, D. Lewis","doi":"10.1109/ICCAD.1997.643571","DOIUrl":null,"url":null,"abstract":"This paper presents a new recursive bipartitioning algorithm for a hierarchical field-programmable system. It draws new insights into relating the quality of the bipartitioning algorithm to circuit structures by the use of the partitioning tree (Hagen et al., 1994). The final algorithm proposed not only forms the basis for the partitioning solution of a 1-million gate field programmable system (Lewis et al., 1997) but can also be applied to general VLSI or multiple-FPGA partitioning problems.","PeriodicalId":187521,"journal":{"name":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical partitioning for field-programmable systems\",\"authors\":\"V. Chan, D. Lewis\",\"doi\":\"10.1109/ICCAD.1997.643571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new recursive bipartitioning algorithm for a hierarchical field-programmable system. It draws new insights into relating the quality of the bipartitioning algorithm to circuit structures by the use of the partitioning tree (Hagen et al., 1994). The final algorithm proposed not only forms the basis for the partitioning solution of a 1-million gate field programmable system (Lewis et al., 1997) but can also be applied to general VLSI or multiple-FPGA partitioning problems.\",\"PeriodicalId\":187521,\"journal\":{\"name\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1997.643571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1997.643571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对分层现场可编程系统,提出了一种新的递归双分区算法。它通过使用划分树将双划分算法的质量与电路结构联系起来(Hagen et al., 1994)。最后提出的算法不仅构成了100万门现场可编程系统分区解决方案的基础(Lewis et al., 1997),而且还可以应用于一般的VLSI或多fpga分区问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical partitioning for field-programmable systems
This paper presents a new recursive bipartitioning algorithm for a hierarchical field-programmable system. It draws new insights into relating the quality of the bipartitioning algorithm to circuit structures by the use of the partitioning tree (Hagen et al., 1994). The final algorithm proposed not only forms the basis for the partitioning solution of a 1-million gate field programmable system (Lewis et al., 1997) but can also be applied to general VLSI or multiple-FPGA partitioning problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信