结合变量分割的最大化-最小化算法加速非笛卡儿感知重构

S. Ramani, J. Fessler
{"title":"结合变量分割的最大化-最小化算法加速非笛卡儿感知重构","authors":"S. Ramani, J. Fessler","doi":"10.1109/ISBI.2013.6556572","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) provides great flexibility in the choice of k-space sampling trajectories. NonCartesian trajectories exhibit several advantages over Cartesian ones but are less amenable to FFT-based manipulation of k-space data. Thus, existing iterative reconstruction methods for nonCartesian trajectories require relatively more computation (interpolation/gridding in addition to FFTs) and can be slow, especially for (undersampled) parallel MRI. In this work, we focus on SENSE-based regularized image reconstruction for nonCartesian trajectories and propose a majorize-minimize approach where we first majorize the SENSE data-fidelity term with a quadratic form involving a symmetric positive definite circulant matrix. For the minimization step, we apply a suitable variable splitting (VS) strategy combined with the augmented Lagrangian framework and alternating minimization that together decouple the circulant matrix from coil sensitivities and the regularizer. The resulting iterative algorithm admits simple update steps, is amenable to FFT-based matrix inversions due in part to the circulant matrix in the majorizer and provides a natural framework for incorporating a two-step procedure for acceleration. Simulations indicate that the proposed algorithm converges faster than some state-of-the-art VSbased iterative image reconstruction methods for the same problem.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Accelerated noncartesian sense reconstruction using a majorize-minimize algorithm combining variable-splitting\",\"authors\":\"S. Ramani, J. Fessler\",\"doi\":\"10.1109/ISBI.2013.6556572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance imaging (MRI) provides great flexibility in the choice of k-space sampling trajectories. NonCartesian trajectories exhibit several advantages over Cartesian ones but are less amenable to FFT-based manipulation of k-space data. Thus, existing iterative reconstruction methods for nonCartesian trajectories require relatively more computation (interpolation/gridding in addition to FFTs) and can be slow, especially for (undersampled) parallel MRI. In this work, we focus on SENSE-based regularized image reconstruction for nonCartesian trajectories and propose a majorize-minimize approach where we first majorize the SENSE data-fidelity term with a quadratic form involving a symmetric positive definite circulant matrix. For the minimization step, we apply a suitable variable splitting (VS) strategy combined with the augmented Lagrangian framework and alternating minimization that together decouple the circulant matrix from coil sensitivities and the regularizer. The resulting iterative algorithm admits simple update steps, is amenable to FFT-based matrix inversions due in part to the circulant matrix in the majorizer and provides a natural framework for incorporating a two-step procedure for acceleration. Simulations indicate that the proposed algorithm converges faster than some state-of-the-art VSbased iterative image reconstruction methods for the same problem.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

磁共振成像(MRI)在选择k空间采样轨迹方面提供了很大的灵活性。与笛卡尔轨迹相比,非笛卡尔轨迹表现出一些优势,但不太适合基于fft的k空间数据操作。因此,现有的非笛卡尔轨迹的迭代重建方法需要相对更多的计算(除了fft之外的插值/网格划分),并且可能很慢,特别是对于(欠采样)并行MRI。在这项工作中,我们专注于非笛卡尔轨迹的基于SENSE的正则化图像重建,并提出了一种最大化-最小化方法,其中我们首先用涉及对称正定循环矩阵的二次形式最大化SENSE数据保真度项。对于最小化步骤,我们采用适当的变量分裂策略,结合增广拉格朗日框架和交替最小化,将循环矩阵与线圈灵敏度和正则化器解耦。由此产生的迭代算法允许简单的更新步骤,可适应基于fft的矩阵反演,部分原因是由于在majorizer中的循环矩阵,并为合并两步加速过程提供了一个自然框架。仿真结果表明,对于相同的问题,该算法的收敛速度要快于目前一些基于vs的迭代图像重建方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated noncartesian sense reconstruction using a majorize-minimize algorithm combining variable-splitting
Magnetic resonance imaging (MRI) provides great flexibility in the choice of k-space sampling trajectories. NonCartesian trajectories exhibit several advantages over Cartesian ones but are less amenable to FFT-based manipulation of k-space data. Thus, existing iterative reconstruction methods for nonCartesian trajectories require relatively more computation (interpolation/gridding in addition to FFTs) and can be slow, especially for (undersampled) parallel MRI. In this work, we focus on SENSE-based regularized image reconstruction for nonCartesian trajectories and propose a majorize-minimize approach where we first majorize the SENSE data-fidelity term with a quadratic form involving a symmetric positive definite circulant matrix. For the minimization step, we apply a suitable variable splitting (VS) strategy combined with the augmented Lagrangian framework and alternating minimization that together decouple the circulant matrix from coil sensitivities and the regularizer. The resulting iterative algorithm admits simple update steps, is amenable to FFT-based matrix inversions due in part to the circulant matrix in the majorizer and provides a natural framework for incorporating a two-step procedure for acceleration. Simulations indicate that the proposed algorithm converges faster than some state-of-the-art VSbased iterative image reconstruction methods for the same problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信