冗余平面机械臂可操纵性测度的若干问题

Ad.M. Martins, A.M. Dias, P. Alsina
{"title":"冗余平面机械臂可操纵性测度的若干问题","authors":"Ad.M. Martins, A.M. Dias, P. Alsina","doi":"10.1109/LARS.2006.334333","DOIUrl":null,"url":null,"abstract":"In this paper we perform an analysis of the manipulability matrix of a manipulator in terms of its eigenvalues and eigenvectors (eigen-analysis), which defines the well know manipulability ellipsoid for planar manipulators. We show that the manipulability measure does not depend on the first joint angle, for redundant manipulators. The determinant of manipulability matrix doesn't change when the first angle varies. So, as we'll show, the product of the eigenvalues remains the same. The manipulability ellipsoid changes with the first joint angle, but keeps constant the manipulability measure (area of the ellipsoid). We claim that manipulability-control based algorithms must use the eigenvectors and eigenvalues of manipulability matrix independently, in order to be optimal. Some tests show the improvement of the control law when we use directly the eigenvectors as a local basis for the control. Furthermore we suggests that the control analysis should be done not only in the joint space, buy in the manifold spanned by the Manipulability matrix M, that should lead to naturally simple control laws that uses the optimal freedom in the joint space","PeriodicalId":129005,"journal":{"name":"2006 IEEE 3rd Latin American Robotics Symposium","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Comments on Manipulability Measure in Redundant Planar Manipulators\",\"authors\":\"Ad.M. Martins, A.M. Dias, P. Alsina\",\"doi\":\"10.1109/LARS.2006.334333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we perform an analysis of the manipulability matrix of a manipulator in terms of its eigenvalues and eigenvectors (eigen-analysis), which defines the well know manipulability ellipsoid for planar manipulators. We show that the manipulability measure does not depend on the first joint angle, for redundant manipulators. The determinant of manipulability matrix doesn't change when the first angle varies. So, as we'll show, the product of the eigenvalues remains the same. The manipulability ellipsoid changes with the first joint angle, but keeps constant the manipulability measure (area of the ellipsoid). We claim that manipulability-control based algorithms must use the eigenvectors and eigenvalues of manipulability matrix independently, in order to be optimal. Some tests show the improvement of the control law when we use directly the eigenvectors as a local basis for the control. Furthermore we suggests that the control analysis should be done not only in the joint space, buy in the manifold spanned by the Manipulability matrix M, that should lead to naturally simple control laws that uses the optimal freedom in the joint space\",\"PeriodicalId\":129005,\"journal\":{\"name\":\"2006 IEEE 3rd Latin American Robotics Symposium\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 3rd Latin American Robotics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LARS.2006.334333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 3rd Latin American Robotics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LARS.2006.334333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文从特征值和特征向量的角度对机械臂的可操作性矩阵进行了分析(本征分析),从而定义了平面机械臂的可操作性椭球。我们证明了冗余机械手的可操纵性度量不依赖于第一关节角。可操作性矩阵的行列式不随第一个角度的变化而变化。所以,正如我们将要展示的,特征值的乘积保持不变。可操纵性椭球随第一个关节角度的变化而变化,但可操纵性测度(椭球面积)保持不变。我们认为基于可操纵性控制的算法必须独立使用可操纵性矩阵的特征向量和特征值,才能达到最优。一些实验表明,当我们直接使用特征向量作为控制的局部基时,控制律得到了改善。此外,我们建议控制分析不仅要在关节空间中进行,而且要在可操纵性矩阵M张成的流形中进行,这应该导致在关节空间中使用最优自由度的自然简单的控制律
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comments on Manipulability Measure in Redundant Planar Manipulators
In this paper we perform an analysis of the manipulability matrix of a manipulator in terms of its eigenvalues and eigenvectors (eigen-analysis), which defines the well know manipulability ellipsoid for planar manipulators. We show that the manipulability measure does not depend on the first joint angle, for redundant manipulators. The determinant of manipulability matrix doesn't change when the first angle varies. So, as we'll show, the product of the eigenvalues remains the same. The manipulability ellipsoid changes with the first joint angle, but keeps constant the manipulability measure (area of the ellipsoid). We claim that manipulability-control based algorithms must use the eigenvectors and eigenvalues of manipulability matrix independently, in order to be optimal. Some tests show the improvement of the control law when we use directly the eigenvectors as a local basis for the control. Furthermore we suggests that the control analysis should be done not only in the joint space, buy in the manifold spanned by the Manipulability matrix M, that should lead to naturally simple control laws that uses the optimal freedom in the joint space
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信