采用超精密加工制造的随机微透镜阵列照明装置

Yukinobu Nishio, K. Fujimura, S. Ogihara, M. Okano, S. Kitagawa
{"title":"采用超精密加工制造的随机微透镜阵列照明装置","authors":"Yukinobu Nishio, K. Fujimura, S. Ogihara, M. Okano, S. Kitagawa","doi":"10.1117/12.2037486","DOIUrl":null,"url":null,"abstract":"The micro lens array illumination device has an advantage on transmittance, but it also has the problem of the generation of diffraction pattern. Well-known method for reducing diffraction is adding randomness to array structure (random structure), but there are many choices to do it. In this study we examined the randomness with a scope that is realizable by diamond machining yet with good productivity. As the result, we have found that the diffraction pattern can be reduced sufficiently by adding randomness of some 10% of its lattice constant to spatial configuration of periodic lattice of micro lens array. In addition, we have also examined controlling the illuminance distribution, by taking advantage of high form accuracy which is special features of diamond machining.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Random micro-lens array illumination device manufactured by ultra-precision machining\",\"authors\":\"Yukinobu Nishio, K. Fujimura, S. Ogihara, M. Okano, S. Kitagawa\",\"doi\":\"10.1117/12.2037486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The micro lens array illumination device has an advantage on transmittance, but it also has the problem of the generation of diffraction pattern. Well-known method for reducing diffraction is adding randomness to array structure (random structure), but there are many choices to do it. In this study we examined the randomness with a scope that is realizable by diamond machining yet with good productivity. As the result, we have found that the diffraction pattern can be reduced sufficiently by adding randomness of some 10% of its lattice constant to spatial configuration of periodic lattice of micro lens array. In addition, we have also examined controlling the illuminance distribution, by taking advantage of high form accuracy which is special features of diamond machining.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2037486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2037486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微透镜阵列照明装置在透光率上具有优势,但也存在衍射图样产生的问题。众所周知的减小衍射的方法是在阵列结构中加入随机性(随机结构),但这种方法有很多选择。在本研究中,我们以金刚石加工可实现的范围检验了随机性,但具有良好的生产率。结果表明,在微透镜阵周期点阵的空间构型中加入约10%的点阵常数的随机性,可以充分减小衍射图样。此外,我们还研究了控制照度分布,利用高形状精度,这是金刚石加工的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random micro-lens array illumination device manufactured by ultra-precision machining
The micro lens array illumination device has an advantage on transmittance, but it also has the problem of the generation of diffraction pattern. Well-known method for reducing diffraction is adding randomness to array structure (random structure), but there are many choices to do it. In this study we examined the randomness with a scope that is realizable by diamond machining yet with good productivity. As the result, we have found that the diffraction pattern can be reduced sufficiently by adding randomness of some 10% of its lattice constant to spatial configuration of periodic lattice of micro lens array. In addition, we have also examined controlling the illuminance distribution, by taking advantage of high form accuracy which is special features of diamond machining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信