基于深度学习的人脸信息内容检测

M. Dobeš, Natália Sabolová
{"title":"基于深度学习的人脸信息内容检测","authors":"M. Dobeš, Natália Sabolová","doi":"10.35116/aa.2022.0024","DOIUrl":null,"url":null,"abstract":"The present paper introduces use of deep neural network for classification of three different categories of emotions - angry, happy and neutral. The database consisted of 48x48 pixel grayscale images of faces from the Face expression recognition dataset from Kaggle. Separate parts of faces such as eyes, nose, or mouths were occluded by a manually inserted 48x15 pixel black rectangle to see what part of the face carries the most significant information about the expressed emotions. By applying pretrained Inception network provided as a part of Keras/Tensorflow environment, we found that, to our surprise, faces with eyes covered were more easily identified. Results were replicated using augmented data.","PeriodicalId":407599,"journal":{"name":"Acta Avionica Journal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information Content Detection in Face Parts Using Deep Learning\",\"authors\":\"M. Dobeš, Natália Sabolová\",\"doi\":\"10.35116/aa.2022.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper introduces use of deep neural network for classification of three different categories of emotions - angry, happy and neutral. The database consisted of 48x48 pixel grayscale images of faces from the Face expression recognition dataset from Kaggle. Separate parts of faces such as eyes, nose, or mouths were occluded by a manually inserted 48x15 pixel black rectangle to see what part of the face carries the most significant information about the expressed emotions. By applying pretrained Inception network provided as a part of Keras/Tensorflow environment, we found that, to our surprise, faces with eyes covered were more easily identified. Results were replicated using augmented data.\",\"PeriodicalId\":407599,\"journal\":{\"name\":\"Acta Avionica Journal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Avionica Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35116/aa.2022.0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Avionica Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35116/aa.2022.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用深度神经网络对愤怒、快乐和中性三种不同类型的情绪进行分类。该数据库由来自Kaggle的人脸表情识别数据集的48 × 48像素的人脸灰度图像组成。面部的不同部位,如眼睛、鼻子或嘴巴,被人工插入的48 × 15像素黑色矩形遮挡,以观察面部的哪一部分携带最重要的情绪表达信息。通过应用作为Keras/Tensorflow环境的一部分提供的预训练Inception网络,我们发现,令我们惊讶的是,蒙着眼睛的脸更容易被识别。使用增强数据复制了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Content Detection in Face Parts Using Deep Learning
The present paper introduces use of deep neural network for classification of three different categories of emotions - angry, happy and neutral. The database consisted of 48x48 pixel grayscale images of faces from the Face expression recognition dataset from Kaggle. Separate parts of faces such as eyes, nose, or mouths were occluded by a manually inserted 48x15 pixel black rectangle to see what part of the face carries the most significant information about the expressed emotions. By applying pretrained Inception network provided as a part of Keras/Tensorflow environment, we found that, to our surprise, faces with eyes covered were more easily identified. Results were replicated using augmented data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信