在智能手机或机器人手持相机的徒手视频中进行健壮的皮肤特征跟踪,以实现临床工具定位和指导

Chun-Yin Huang, J. Galeotti
{"title":"在智能手机或机器人手持相机的徒手视频中进行健壮的皮肤特征跟踪,以实现临床工具定位和指导","authors":"Chun-Yin Huang, J. Galeotti","doi":"10.1109/ICRA48506.2021.9561616","DOIUrl":null,"url":null,"abstract":"Our novel skin-feature visual-tracking algorithm enables anatomic vSLAM and (by extension) localization of clinical tools relative to the patient’s body. Tracking naturally occurring features is challenging due to patient uniqueness, deformability, and lack of an accurate a-priori 3D geometric model. Our method (i) tracks skin features in a smartphone-camera video sequence, (ii) performs anatomic Simultaneous Localization And Mapping (SLAM) of camera motion relative to the patient’s 3D skin surface, and (iii) utilizes existing visual methods to track clinical tool(s) relative to the patient’s reconstructed 3D skin surface. (We demonstrate tracking of a simulated ultrasound probe relative to the patient by using an Apriltag visual fiducial). Our skin-feature tracking method utilizes the Fourier-Mellin Transform for robust performance, which we incorporated and extend an existing Phase Only Correlation (POC) based algorithm to be suitable for our application of free-hand smartphone video, wherein the distance of the camera fluctuates relative to the patient. Our SLAM approach further utilizes Structure from Motion and Bundle Adjustment to achieve an accurate 3D model of the human body with minimal drift-error in camera trajectory. We believe this to be the first freehand smartphone-camera tracking of natural skin features for anatomic tracking of surgical tools, ultrasound probe, etc.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Skin-Feature Tracking in Free-Hand Video from Smartphone or Robot-Held Camera, to Enable Clinical-Tool Localization and Guidance\",\"authors\":\"Chun-Yin Huang, J. Galeotti\",\"doi\":\"10.1109/ICRA48506.2021.9561616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our novel skin-feature visual-tracking algorithm enables anatomic vSLAM and (by extension) localization of clinical tools relative to the patient’s body. Tracking naturally occurring features is challenging due to patient uniqueness, deformability, and lack of an accurate a-priori 3D geometric model. Our method (i) tracks skin features in a smartphone-camera video sequence, (ii) performs anatomic Simultaneous Localization And Mapping (SLAM) of camera motion relative to the patient’s 3D skin surface, and (iii) utilizes existing visual methods to track clinical tool(s) relative to the patient’s reconstructed 3D skin surface. (We demonstrate tracking of a simulated ultrasound probe relative to the patient by using an Apriltag visual fiducial). Our skin-feature tracking method utilizes the Fourier-Mellin Transform for robust performance, which we incorporated and extend an existing Phase Only Correlation (POC) based algorithm to be suitable for our application of free-hand smartphone video, wherein the distance of the camera fluctuates relative to the patient. Our SLAM approach further utilizes Structure from Motion and Bundle Adjustment to achieve an accurate 3D model of the human body with minimal drift-error in camera trajectory. We believe this to be the first freehand smartphone-camera tracking of natural skin features for anatomic tracking of surgical tools, ultrasound probe, etc.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们新颖的皮肤特征视觉跟踪算法使解剖vSLAM和(通过扩展)临床工具相对于患者身体的定位成为可能。由于患者的独特性、可变形性和缺乏准确的先验3D几何模型,跟踪自然发生的特征具有挑战性。我们的方法(i)跟踪智能手机摄像头视频序列中的皮肤特征,(ii)执行相对于患者3D皮肤表面的相机运动的解剖同步定位和映射(SLAM),以及(iii)利用现有的视觉方法来跟踪相对于患者重建的3D皮肤表面的临床工具。(我们演示了通过使用Apriltag视觉基准来跟踪模拟超声探头相对于患者)。我们的皮肤特征跟踪方法利用傅里叶-梅林变换(Fourier-Mellin Transform)实现鲁棒性,我们结合并扩展了现有的基于相位相关(POC)的算法,以适用于我们的徒手智能手机视频应用,其中相机距离相对于患者波动。我们的SLAM方法进一步利用运动结构和束调整来实现精确的人体3D模型,并且在相机轨迹中具有最小的漂移误差。我们相信这是第一个徒手智能手机相机跟踪自然皮肤特征的解剖跟踪手术工具,超声探头等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Skin-Feature Tracking in Free-Hand Video from Smartphone or Robot-Held Camera, to Enable Clinical-Tool Localization and Guidance
Our novel skin-feature visual-tracking algorithm enables anatomic vSLAM and (by extension) localization of clinical tools relative to the patient’s body. Tracking naturally occurring features is challenging due to patient uniqueness, deformability, and lack of an accurate a-priori 3D geometric model. Our method (i) tracks skin features in a smartphone-camera video sequence, (ii) performs anatomic Simultaneous Localization And Mapping (SLAM) of camera motion relative to the patient’s 3D skin surface, and (iii) utilizes existing visual methods to track clinical tool(s) relative to the patient’s reconstructed 3D skin surface. (We demonstrate tracking of a simulated ultrasound probe relative to the patient by using an Apriltag visual fiducial). Our skin-feature tracking method utilizes the Fourier-Mellin Transform for robust performance, which we incorporated and extend an existing Phase Only Correlation (POC) based algorithm to be suitable for our application of free-hand smartphone video, wherein the distance of the camera fluctuates relative to the patient. Our SLAM approach further utilizes Structure from Motion and Bundle Adjustment to achieve an accurate 3D model of the human body with minimal drift-error in camera trajectory. We believe this to be the first freehand smartphone-camera tracking of natural skin features for anatomic tracking of surgical tools, ultrasound probe, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信