Navier-Stokes方程解充分接近于拉普拉斯本征函数的全局正则性

E. Miller
{"title":"Navier-Stokes方程解充分接近于拉普拉斯本征函数的全局正则性","authors":"E. Miller","doi":"10.1090/bproc/62","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> norm of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">u,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to alpha greater-than five halves comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mfrac>\n <mml:mn>5</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2\\leq \\alpha >\\frac {5}{2},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to a regularity criterion requiring control on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> norm multiplied by the deficit in the interpolation inequality for the embedding of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha minus 2 Baseline intersection ModifyingAbove upper H With dot Superscript alpha Baseline right-arrow with hook ModifyingAbove upper H With dot Superscript alpha minus 1 Baseline period\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∩<!-- ∩ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">↪<!-- ↪ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^{\\alpha -2}\\cap \\dot {H}^{\\alpha } \\hookrightarrow \\dot {H}^{\\alpha -1}.</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian\",\"authors\":\"E. Miller\",\"doi\":\"10.1090/bproc/62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H With dot Superscript alpha\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\dot {H}^\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> norm of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u,</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 less-than-or-equal-to alpha greater-than five halves comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mfrac>\\n <mml:mn>5</mml:mn>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2\\\\leq \\\\alpha >\\\\frac {5}{2},</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to a regularity criterion requiring control on the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H With dot Superscript alpha\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\dot {H}^\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> norm multiplied by the deficit in the interpolation inequality for the embedding of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H With dot Superscript alpha minus 2 Baseline intersection ModifyingAbove upper H With dot Superscript alpha Baseline right-arrow with hook ModifyingAbove upper H With dot Superscript alpha minus 1 Baseline period\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>∩<!-- ∩ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">↪<!-- ↪ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>.</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\dot {H}^{\\\\alpha -2}\\\\cap \\\\dot {H}^{\\\\alpha } \\\\hookrightarrow \\\\dot {H}^{\\\\alpha -1}.</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们证明了Navier-Stokes方程解足够接近于拉普拉斯特征函数的一个新的尺度临界正则性准则。这一估计改进了以前的正则性准则,要求控制u, u的H˙α \dot H^ {}\alpha范数,其中2≤α > 5 2,2 \leq\alpha > \frac 52,转化为需要控制H˙α {}{}\dot H^ {}\alpha范数乘以H˙α−2∩H˙α“嵌入”的插值不等式中的亏缺的正则性准则H˙α−1。\dot H^ {}{\alpha -2 }\cap\dot H^ {}{\alpha}\hookrightarrow\dot H^ {}{\alpha -1。这一规则准则至少在启发式上表明,在湍流理论中,Navier-Stokes方程的潜在爆破解与Kolmogorov-Obhukov谱之间可能存在某种关系。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian

In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the H ˙ α \dot {H}^\alpha norm of u , u, with 2 α > 5 2 , 2\leq \alpha >\frac {5}{2}, to a regularity criterion requiring control on the H ˙ α \dot {H}^\alpha norm multiplied by the deficit in the interpolation inequality for the embedding of H ˙ α 2 H ˙ α H ˙ α 1 . \dot {H}^{\alpha -2}\cap \dot {H}^{\alpha } \hookrightarrow \dot {H}^{\alpha -1}. This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信