{"title":"Navier-Stokes方程解充分接近于拉普拉斯本征函数的全局正则性","authors":"E. Miller","doi":"10.1090/bproc/62","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> norm of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">u,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to alpha greater-than five halves comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mfrac>\n <mml:mn>5</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2\\leq \\alpha >\\frac {5}{2},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to a regularity criterion requiring control on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> norm multiplied by the deficit in the interpolation inequality for the embedding of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha minus 2 Baseline intersection ModifyingAbove upper H With dot Superscript alpha Baseline right-arrow with hook ModifyingAbove upper H With dot Superscript alpha minus 1 Baseline period\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∩<!-- ∩ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">↪<!-- ↪ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^{\\alpha -2}\\cap \\dot {H}^{\\alpha } \\hookrightarrow \\dot {H}^{\\alpha -1}.</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian\",\"authors\":\"E. Miller\",\"doi\":\"10.1090/bproc/62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H With dot Superscript alpha\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\dot {H}^\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> norm of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u,</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 less-than-or-equal-to alpha greater-than five halves comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mfrac>\\n <mml:mn>5</mml:mn>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2\\\\leq \\\\alpha >\\\\frac {5}{2},</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to a regularity criterion requiring control on the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H With dot Superscript alpha\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\dot {H}^\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> norm multiplied by the deficit in the interpolation inequality for the embedding of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H With dot Superscript alpha minus 2 Baseline intersection ModifyingAbove upper H With dot Superscript alpha Baseline right-arrow with hook ModifyingAbove upper H With dot Superscript alpha minus 1 Baseline period\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>∩<!-- ∩ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>α<!-- α --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">↪<!-- ↪ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>H</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>.</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\dot {H}^{\\\\alpha -2}\\\\cap \\\\dot {H}^{\\\\alpha } \\\\hookrightarrow \\\\dot {H}^{\\\\alpha -1}.</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian
In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the H˙α\dot {H}^\alpha norm of u,u, with 2≤α>52,2\leq \alpha >\frac {5}{2}, to a regularity criterion requiring control on the H˙α\dot {H}^\alpha norm multiplied by the deficit in the interpolation inequality for the embedding of H˙α−2∩H˙α↪H˙α−1.\dot {H}^{\alpha -2}\cap \dot {H}^{\alpha } \hookrightarrow \dot {H}^{\alpha -1}. This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.