{"title":"一种精确、高效的并行遗传算法来调度集群上的任务","authors":"Michelle D. Moore","doi":"10.1109/IPDPS.2003.1213276","DOIUrl":null,"url":null,"abstract":"Recent breakthroughs in the mathematical estimation of parallel genetic algorithm parameters by Cantu-Paz (2000) are applied to the NP-complete problem of scheduling multiple tasks on a cluster of computers connected by a shared bus. Experiments reveal that the parallel scheduling algorithm develops very accurate schedules when the parameter guidelines are used.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"An accurate and efficient parallel genetic algorithm to schedule tasks on a cluster\",\"authors\":\"Michelle D. Moore\",\"doi\":\"10.1109/IPDPS.2003.1213276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent breakthroughs in the mathematical estimation of parallel genetic algorithm parameters by Cantu-Paz (2000) are applied to the NP-complete problem of scheduling multiple tasks on a cluster of computers connected by a shared bus. Experiments reveal that the parallel scheduling algorithm develops very accurate schedules when the parameter guidelines are used.\",\"PeriodicalId\":177848,\"journal\":{\"name\":\"Proceedings International Parallel and Distributed Processing Symposium\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2003.1213276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An accurate and efficient parallel genetic algorithm to schedule tasks on a cluster
Recent breakthroughs in the mathematical estimation of parallel genetic algorithm parameters by Cantu-Paz (2000) are applied to the NP-complete problem of scheduling multiple tasks on a cluster of computers connected by a shared bus. Experiments reveal that the parallel scheduling algorithm develops very accurate schedules when the parameter guidelines are used.