心电描画采用多分辨率DWT和相对幅度和斜率比较

D. Sadhukhan, S. Pal, M. Mitra
{"title":"心电描画采用多分辨率DWT和相对幅度和斜率比较","authors":"D. Sadhukhan, S. Pal, M. Mitra","doi":"10.1109/CIEC.2016.7513773","DOIUrl":null,"url":null,"abstract":"The paper proposes an algorithm for delineation of ECG data based on multiresolution Discrete Wavelet Transform (DWT) and relative magnitude and slope comparison on selected time windows. The data is initially denoised using linear and nonlinear wavelet based filtering techniques to eliminate both low and high frequency ECG artifacts and also reduce the wide-band noises. The delineation algorithm involves combining specific detailed sub-bands of the denoised data and applying proper thresholds and time windows to identify the wave boundaries (QRS, P and T waves). The characteristic points of each wave (peaks, onset and offset) are then detected using relative magnitude and slope comparison within each wave. The algorithm yields sufficiently high detection sensitivity of 99.85% for QRS regions and also efficiently identifies the P and T wave features, as tested with the MIT-BIH arrhythmia database.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ECG delineation using multiresolution DWT and relative magnitude and slope comparison\",\"authors\":\"D. Sadhukhan, S. Pal, M. Mitra\",\"doi\":\"10.1109/CIEC.2016.7513773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes an algorithm for delineation of ECG data based on multiresolution Discrete Wavelet Transform (DWT) and relative magnitude and slope comparison on selected time windows. The data is initially denoised using linear and nonlinear wavelet based filtering techniques to eliminate both low and high frequency ECG artifacts and also reduce the wide-band noises. The delineation algorithm involves combining specific detailed sub-bands of the denoised data and applying proper thresholds and time windows to identify the wave boundaries (QRS, P and T waves). The characteristic points of each wave (peaks, onset and offset) are then detected using relative magnitude and slope comparison within each wave. The algorithm yields sufficiently high detection sensitivity of 99.85% for QRS regions and also efficiently identifies the P and T wave features, as tested with the MIT-BIH arrhythmia database.\",\"PeriodicalId\":443343,\"journal\":{\"name\":\"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEC.2016.7513773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于多分辨率离散小波变换(DWT)的心电数据描述算法,并在选定的时间窗上进行相对幅度和斜率比较。数据最初使用基于线性和非线性小波的滤波技术去噪,以消除低频和高频心电伪影,并降低宽带噪声。圈定算法包括结合去噪数据的特定详细子带,并应用适当的阈值和时间窗来识别波边界(QRS波、P波和T波)。每个波的特征点(峰,开始和偏移),然后检测使用相对幅度和坡度比较在每个波。通过MIT-BIH心律失常数据库的测试,该算法对QRS区域的检测灵敏度达到99.85%,并且可以有效地识别P波和T波特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG delineation using multiresolution DWT and relative magnitude and slope comparison
The paper proposes an algorithm for delineation of ECG data based on multiresolution Discrete Wavelet Transform (DWT) and relative magnitude and slope comparison on selected time windows. The data is initially denoised using linear and nonlinear wavelet based filtering techniques to eliminate both low and high frequency ECG artifacts and also reduce the wide-band noises. The delineation algorithm involves combining specific detailed sub-bands of the denoised data and applying proper thresholds and time windows to identify the wave boundaries (QRS, P and T waves). The characteristic points of each wave (peaks, onset and offset) are then detected using relative magnitude and slope comparison within each wave. The algorithm yields sufficiently high detection sensitivity of 99.85% for QRS regions and also efficiently identifies the P and T wave features, as tested with the MIT-BIH arrhythmia database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信