Fangfang Wang, Jingtao Zhu, M. Tan, Li Jiang, Zhanshan Wang
{"title":"天文x射线望远镜用硬x射线超镜的新设计概念","authors":"Fangfang Wang, Jingtao Zhu, M. Tan, Li Jiang, Zhanshan Wang","doi":"10.1117/12.887371","DOIUrl":null,"url":null,"abstract":"A numerical and analysis method for optimizing multilayer supermirrors is developed based on the combination of the power-law method and the local optimization method of simplex algorithm. The parameters in the power-law formula are optimized by genetic algorithm. This allows a global minimization of the merit function and a many-fold decrease of the computing time. Several groups of X-ray supermirrors with the energy extended to 30 keV are successfully designed using this optimization method for a hard X-ray telescope. Tungsten and boron carbide are chosen as the multilayer materials. High reflectivity and high effective area are obtained, indicating that this numerical and analysis method is an effective tool to design hard X-ray supermirrors.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New design concept of hard x-ray supermirrors for astronomical x-ray telescopes\",\"authors\":\"Fangfang Wang, Jingtao Zhu, M. Tan, Li Jiang, Zhanshan Wang\",\"doi\":\"10.1117/12.887371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical and analysis method for optimizing multilayer supermirrors is developed based on the combination of the power-law method and the local optimization method of simplex algorithm. The parameters in the power-law formula are optimized by genetic algorithm. This allows a global minimization of the merit function and a many-fold decrease of the computing time. Several groups of X-ray supermirrors with the energy extended to 30 keV are successfully designed using this optimization method for a hard X-ray telescope. Tungsten and boron carbide are chosen as the multilayer materials. High reflectivity and high effective area are obtained, indicating that this numerical and analysis method is an effective tool to design hard X-ray supermirrors.\",\"PeriodicalId\":316559,\"journal\":{\"name\":\"International Conference on Thin Film Physics and Applications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.887371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.887371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New design concept of hard x-ray supermirrors for astronomical x-ray telescopes
A numerical and analysis method for optimizing multilayer supermirrors is developed based on the combination of the power-law method and the local optimization method of simplex algorithm. The parameters in the power-law formula are optimized by genetic algorithm. This allows a global minimization of the merit function and a many-fold decrease of the computing time. Several groups of X-ray supermirrors with the energy extended to 30 keV are successfully designed using this optimization method for a hard X-ray telescope. Tungsten and boron carbide are chosen as the multilayer materials. High reflectivity and high effective area are obtained, indicating that this numerical and analysis method is an effective tool to design hard X-ray supermirrors.