基于深度学习模型的标志性论文发现研究

Yucheng Chen, Zhengyi Guan, Chundong Li, Chenyang Wang, Zhe Wang
{"title":"基于深度学习模型的标志性论文发现研究","authors":"Yucheng Chen, Zhengyi Guan, Chundong Li, Chenyang Wang, Zhe Wang","doi":"10.55835/64382c384cc7592973d4786e","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for selecting iconic papers. We use chapter structure recognition technology and combine it with popular deep learning models to identify the chapter structure of the papers. Based on this identification result, we calculate the sum of the number of times each paper is mentioned in all articles, to discover iconic papers with high mention frequency. We focus on the \"Method\" and \"Conclusion\" sections to find papers that are frequently mentioned in these two sections and determine iconic papers. With this method, we can more accurately discover and evaluate important research results and provide more valuable references for scholars in related fields.","PeriodicalId":334841,"journal":{"name":"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Iconic Paper Discovery Based on Deep Learning Models\",\"authors\":\"Yucheng Chen, Zhengyi Guan, Chundong Li, Chenyang Wang, Zhe Wang\",\"doi\":\"10.55835/64382c384cc7592973d4786e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method for selecting iconic papers. We use chapter structure recognition technology and combine it with popular deep learning models to identify the chapter structure of the papers. Based on this identification result, we calculate the sum of the number of times each paper is mentioned in all articles, to discover iconic papers with high mention frequency. We focus on the \\\"Method\\\" and \\\"Conclusion\\\" sections to find papers that are frequently mentioned in these two sections and determine iconic papers. With this method, we can more accurately discover and evaluate important research results and provide more valuable references for scholars in related fields.\",\"PeriodicalId\":334841,\"journal\":{\"name\":\"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55835/64382c384cc7592973d4786e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Conference on Science, Technology and Innovation Indicators (STI 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55835/64382c384cc7592973d4786e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种选择标志性论文的新方法。我们使用章节结构识别技术,并将其与流行的深度学习模型相结合来识别论文的章节结构。基于这个识别结果,我们计算出每篇论文在所有文章中被提及次数的总和,发现被提及频率高的标志性论文。我们将重点放在“Method”和“Conclusion”这两个部分,寻找在这两个部分中被频繁提及的论文,确定标志性论文。通过这种方法,我们可以更准确地发现和评价重要的研究成果,为相关领域的学者提供更有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Iconic Paper Discovery Based on Deep Learning Models
This paper proposes a new method for selecting iconic papers. We use chapter structure recognition technology and combine it with popular deep learning models to identify the chapter structure of the papers. Based on this identification result, we calculate the sum of the number of times each paper is mentioned in all articles, to discover iconic papers with high mention frequency. We focus on the "Method" and "Conclusion" sections to find papers that are frequently mentioned in these two sections and determine iconic papers. With this method, we can more accurately discover and evaluate important research results and provide more valuable references for scholars in related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信