GPU上的模糊自适应各向异性扩散加速

Lian Yuanfeng, Zhao Yan
{"title":"GPU上的模糊自适应各向异性扩散加速","authors":"Lian Yuanfeng, Zhao Yan","doi":"10.1109/ICEMI.2011.6037973","DOIUrl":null,"url":null,"abstract":"A new filtering method to remove Rician noise from magnetic resonance images is presented, while harnessing the powerful computational resources of GPUs. In this filter, the direction of diffusion and the characters of different kinds of pixel in noisy MR images are characterized by the eigenvector and eigenvalues of structure tensor. In order to enhance edges, the shock filter based on fuzzy sets is coupled to it. This model can be performed in a memory and computation-efficient way on modern programmable GPUs, which can be regarded as massively parallel coprocessors through NVidia's CUDA compute paradigm. We achieve considerable speedups compared to an optimized GPU implementation and CPU methods for 2D MR image.","PeriodicalId":321964,"journal":{"name":"IEEE 2011 10th International Conference on Electronic Measurement & Instruments","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accelerating fuzzy adaptive anisotropic diffusion on GPU\",\"authors\":\"Lian Yuanfeng, Zhao Yan\",\"doi\":\"10.1109/ICEMI.2011.6037973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new filtering method to remove Rician noise from magnetic resonance images is presented, while harnessing the powerful computational resources of GPUs. In this filter, the direction of diffusion and the characters of different kinds of pixel in noisy MR images are characterized by the eigenvector and eigenvalues of structure tensor. In order to enhance edges, the shock filter based on fuzzy sets is coupled to it. This model can be performed in a memory and computation-efficient way on modern programmable GPUs, which can be regarded as massively parallel coprocessors through NVidia's CUDA compute paradigm. We achieve considerable speedups compared to an optimized GPU implementation and CPU methods for 2D MR image.\",\"PeriodicalId\":321964,\"journal\":{\"name\":\"IEEE 2011 10th International Conference on Electronic Measurement & Instruments\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 2011 10th International Conference on Electronic Measurement & Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMI.2011.6037973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 2011 10th International Conference on Electronic Measurement & Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMI.2011.6037973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的滤波方法,利用gpu强大的计算资源,去除磁共振图像中的噪声。该滤波器利用结构张量的特征向量和特征值来表征含噪磁共振图像中不同像素点的扩散方向和特征。为了增强边缘,将基于模糊集的冲击滤波器与之耦合。该模型可以在现代可编程gpu上以内存和计算效率高的方式执行,可以通过NVidia的CUDA计算范式将其视为大规模并行协处理器。与优化的GPU实现和2D MR图像的CPU方法相比,我们实现了相当大的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating fuzzy adaptive anisotropic diffusion on GPU
A new filtering method to remove Rician noise from magnetic resonance images is presented, while harnessing the powerful computational resources of GPUs. In this filter, the direction of diffusion and the characters of different kinds of pixel in noisy MR images are characterized by the eigenvector and eigenvalues of structure tensor. In order to enhance edges, the shock filter based on fuzzy sets is coupled to it. This model can be performed in a memory and computation-efficient way on modern programmable GPUs, which can be regarded as massively parallel coprocessors through NVidia's CUDA compute paradigm. We achieve considerable speedups compared to an optimized GPU implementation and CPU methods for 2D MR image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信