改进的K近邻分类算法

Yu-Long Qiao, Jeng-Shyang Pan, Shenghe Sun
{"title":"改进的K近邻分类算法","authors":"Yu-Long Qiao, Jeng-Shyang Pan, Shenghe Sun","doi":"10.1109/APCCAS.2004.1413076","DOIUrl":null,"url":null,"abstract":"A novel and efficient algorithm is proposed to reduce the computational complexity for KNN classification. It uses two important features, the approximation coefficient of a fully decomposed feature vector with Haar wavelet and the variance of the corresponding untransformed vector, to produce two efficient test conditions. Since those vectors that are impossible to be the k closest vectors in the design set are kicked out quickly by these conditions, this algorithm saves largely the classification time and have the same classification performance as that of the exhaustive search classification algorithm. Experimental results based on texture image classification verify our proposed algorithm.","PeriodicalId":426683,"journal":{"name":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Improved K nearest neighbor classification algorithm\",\"authors\":\"Yu-Long Qiao, Jeng-Shyang Pan, Shenghe Sun\",\"doi\":\"10.1109/APCCAS.2004.1413076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel and efficient algorithm is proposed to reduce the computational complexity for KNN classification. It uses two important features, the approximation coefficient of a fully decomposed feature vector with Haar wavelet and the variance of the corresponding untransformed vector, to produce two efficient test conditions. Since those vectors that are impossible to be the k closest vectors in the design set are kicked out quickly by these conditions, this algorithm saves largely the classification time and have the same classification performance as that of the exhaustive search classification algorithm. Experimental results based on texture image classification verify our proposed algorithm.\",\"PeriodicalId\":426683,\"journal\":{\"name\":\"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2004.1413076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2004.1413076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为降低KNN分类的计算复杂度,提出了一种新颖有效的算法。它利用Haar小波完全分解的特征向量的近似系数和对应的未变换向量的方差两个重要特征来产生两个有效的测试条件。由于在这些条件下,设计集中那些不可能成为k个最接近向量的向量会被快速剔除,因此该算法大大节省了分类时间,并且具有与穷穷搜索分类算法相同的分类性能。基于纹理图像分类的实验结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved K nearest neighbor classification algorithm
A novel and efficient algorithm is proposed to reduce the computational complexity for KNN classification. It uses two important features, the approximation coefficient of a fully decomposed feature vector with Haar wavelet and the variance of the corresponding untransformed vector, to produce two efficient test conditions. Since those vectors that are impossible to be the k closest vectors in the design set are kicked out quickly by these conditions, this algorithm saves largely the classification time and have the same classification performance as that of the exhaustive search classification algorithm. Experimental results based on texture image classification verify our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信