{"title":"一种从呼出空气中捕获湿度的方法","authors":"Sandra Grau-Bartual, A. Al-Jumaily","doi":"10.1115/IMECE2018-86507","DOIUrl":null,"url":null,"abstract":"Lung supportive devices (LSD) are widely used for respiratory ventilation and therapy to help provide breathing support for patients with various lung diseases including Obstructive Sleep Apnea. These devices deliver air to the patient through a nasal or facial mask, and the use of these devices normally results in dryness in the upper airways. However, the exhaled air consists of very high humidity content. The question raised, is it possible to recover some of the moisture content of this air to reuse in the inhalation process.\n This research focuses on developing an element which can recover the moisture from the exhaled air and the possibility of using it for re-inhalation. The main component is made up of a fibrous cotton fabric polymerized with Poly (N-isopropylacrylamide) (PNIPAM) and sewed with a resistor filament to control the temperature. The results show a viable element which is able to trap water molecules from the expiration airflow and release them into the inspiration airflow.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach to Capture Humidity From Exhaled Air\",\"authors\":\"Sandra Grau-Bartual, A. Al-Jumaily\",\"doi\":\"10.1115/IMECE2018-86507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung supportive devices (LSD) are widely used for respiratory ventilation and therapy to help provide breathing support for patients with various lung diseases including Obstructive Sleep Apnea. These devices deliver air to the patient through a nasal or facial mask, and the use of these devices normally results in dryness in the upper airways. However, the exhaled air consists of very high humidity content. The question raised, is it possible to recover some of the moisture content of this air to reuse in the inhalation process.\\n This research focuses on developing an element which can recover the moisture from the exhaled air and the possibility of using it for re-inhalation. The main component is made up of a fibrous cotton fabric polymerized with Poly (N-isopropylacrylamide) (PNIPAM) and sewed with a resistor filament to control the temperature. The results show a viable element which is able to trap water molecules from the expiration airflow and release them into the inspiration airflow.\",\"PeriodicalId\":332737,\"journal\":{\"name\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lung supportive devices (LSD) are widely used for respiratory ventilation and therapy to help provide breathing support for patients with various lung diseases including Obstructive Sleep Apnea. These devices deliver air to the patient through a nasal or facial mask, and the use of these devices normally results in dryness in the upper airways. However, the exhaled air consists of very high humidity content. The question raised, is it possible to recover some of the moisture content of this air to reuse in the inhalation process.
This research focuses on developing an element which can recover the moisture from the exhaled air and the possibility of using it for re-inhalation. The main component is made up of a fibrous cotton fabric polymerized with Poly (N-isopropylacrylamide) (PNIPAM) and sewed with a resistor filament to control the temperature. The results show a viable element which is able to trap water molecules from the expiration airflow and release them into the inspiration airflow.