演化计算工具辅助的扩展卡尔曼滤波弹道目标跟踪

K. Kumar, Nagarjuna Rao Dustakar, R. K. Jatoth
{"title":"演化计算工具辅助的扩展卡尔曼滤波弹道目标跟踪","authors":"K. Kumar, Nagarjuna Rao Dustakar, R. K. Jatoth","doi":"10.1109/ICETET.2010.125","DOIUrl":null,"url":null,"abstract":"Tracking a ballistic target in its reentry mode by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the position of target when the measurements are corrupted with noise. If the measurements are nonlinear (radar measurements) then Extended kalman filter (EKF) is used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation which is offline. Tuning an EKF is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R). This paper presents a new method of tuning the EKF using different evolutionary algorithms.","PeriodicalId":175615,"journal":{"name":"2010 3rd International Conference on Emerging Trends in Engineering and Technology","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evolutionary Computational Tools Aided Extended Kalman Filter for Ballistic Target Tracking\",\"authors\":\"K. Kumar, Nagarjuna Rao Dustakar, R. K. Jatoth\",\"doi\":\"10.1109/ICETET.2010.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking a ballistic target in its reentry mode by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the position of target when the measurements are corrupted with noise. If the measurements are nonlinear (radar measurements) then Extended kalman filter (EKF) is used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation which is offline. Tuning an EKF is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R). This paper presents a new method of tuning the EKF using different evolutionary algorithms.\",\"PeriodicalId\":175615,\"journal\":{\"name\":\"2010 3rd International Conference on Emerging Trends in Engineering and Technology\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Conference on Emerging Trends in Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETET.2010.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2010.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在非线性滤波中,考虑雷达测量对弹道目标的再入状态进行跟踪是一个非常复杂的问题。利用卡尔曼滤波(KF)在测量值被噪声干扰时估计目标的位置。如果测量是非线性的(雷达测量),则使用扩展卡尔曼滤波(EKF)。为了获得目标状态的可靠估计,必须在离线操作之前对滤波器进行调优。EKF的调优是对过程噪声协方差矩阵(Q)和测量噪声协方差矩阵(R)进行估计的过程。本文提出了一种利用不同的进化算法对EKF进行调优的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Computational Tools Aided Extended Kalman Filter for Ballistic Target Tracking
Tracking a ballistic target in its reentry mode by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the position of target when the measurements are corrupted with noise. If the measurements are nonlinear (radar measurements) then Extended kalman filter (EKF) is used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation which is offline. Tuning an EKF is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R). This paper presents a new method of tuning the EKF using different evolutionary algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信