逻辑电路中可重构低功耗并发错误检测

S. Almukhaizim, Sara Bunian, O. Sinanoglu
{"title":"逻辑电路中可重构低功耗并发错误检测","authors":"S. Almukhaizim, Sara Bunian, O. Sinanoglu","doi":"10.1109/IDT.2010.5724415","DOIUrl":null,"url":null,"abstract":"Concurrent Error Detection (CED) methods are commonly employed to provide some level of error detection capability at the cost of some area and power overhead. In many applications, however, the error detection capability must be reconfigured dynamically, in order to adapt to the available power budget, criticality of the processed data, a thermal-safe schedule, etc. In this work, we propose a reconfigurable duplication-based CED infrastructure for logic circuits. The key idea is to enable/disable the operation of the duplicate circuit according to a set of control conditions. When CED is disabled, the inputs to the duplicate circuit retain their previous values (i.e., reduction in power dissipation via elimination of switching activity), yet errors are not detected (i.e., reduction in CED coverage). Experimental results using judicious and random selection of control conditions yield the same end-result; power dissipation is commensurate with CED coverage. Therefore, LFSR structures can be used to easily generate and reconfigure conditions, enabling their dynamic adjustment to adapt to the power constraints of the system.","PeriodicalId":153183,"journal":{"name":"2010 5th International Design and Test Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reconfigurable low-power Concurrent Error Detection in logic circuits\",\"authors\":\"S. Almukhaizim, Sara Bunian, O. Sinanoglu\",\"doi\":\"10.1109/IDT.2010.5724415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concurrent Error Detection (CED) methods are commonly employed to provide some level of error detection capability at the cost of some area and power overhead. In many applications, however, the error detection capability must be reconfigured dynamically, in order to adapt to the available power budget, criticality of the processed data, a thermal-safe schedule, etc. In this work, we propose a reconfigurable duplication-based CED infrastructure for logic circuits. The key idea is to enable/disable the operation of the duplicate circuit according to a set of control conditions. When CED is disabled, the inputs to the duplicate circuit retain their previous values (i.e., reduction in power dissipation via elimination of switching activity), yet errors are not detected (i.e., reduction in CED coverage). Experimental results using judicious and random selection of control conditions yield the same end-result; power dissipation is commensurate with CED coverage. Therefore, LFSR structures can be used to easily generate and reconfigure conditions, enabling their dynamic adjustment to adapt to the power constraints of the system.\",\"PeriodicalId\":153183,\"journal\":{\"name\":\"2010 5th International Design and Test Workshop\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Design and Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2010.5724415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Design and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2010.5724415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

并发错误检测(CED)方法通常用于提供某种级别的错误检测能力,但要付出一定的面积和功率开销。然而,在许多应用中,错误检测能力必须动态重新配置,以适应可用的功率预算、处理数据的临界性、热安全计划等。在这项工作中,我们提出了一种可重构的基于重复的逻辑电路CED基础设施。关键思想是根据一组控制条件使能/使能重复电路的操作。当CED被禁用时,重复电路的输入保留其先前的值(即,通过消除开关活动减少功耗),但未检测到错误(即,减少CED覆盖)。采用明智和随机选择控制条件的实验结果产生相同的最终结果;功耗与CED覆盖范围相适应。因此,LFSR结构可以很容易地生成和重新配置条件,使其能够动态调整以适应系统的功率约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfigurable low-power Concurrent Error Detection in logic circuits
Concurrent Error Detection (CED) methods are commonly employed to provide some level of error detection capability at the cost of some area and power overhead. In many applications, however, the error detection capability must be reconfigured dynamically, in order to adapt to the available power budget, criticality of the processed data, a thermal-safe schedule, etc. In this work, we propose a reconfigurable duplication-based CED infrastructure for logic circuits. The key idea is to enable/disable the operation of the duplicate circuit according to a set of control conditions. When CED is disabled, the inputs to the duplicate circuit retain their previous values (i.e., reduction in power dissipation via elimination of switching activity), yet errors are not detected (i.e., reduction in CED coverage). Experimental results using judicious and random selection of control conditions yield the same end-result; power dissipation is commensurate with CED coverage. Therefore, LFSR structures can be used to easily generate and reconfigure conditions, enabling their dynamic adjustment to adapt to the power constraints of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信