基于自适应遗传算法的系统发育树重建

A. Skourikhine
{"title":"基于自适应遗传算法的系统发育树重建","authors":"A. Skourikhine","doi":"10.1109/BIBE.2000.889599","DOIUrl":null,"url":null,"abstract":"We have developed a self-adaptive genetic algorithm (GA) for a maximum-likelihood reconstruction of phylogenetic trees using nucleotide sequence data. It resulted in a faster reconstruction of the trees with less computing power and automatic self-adjustment of settings of the optimization algorithm parameters. We focused on the use of GAs with self-adaptive control parameters and GA integration with phylogenetic tree representations. The developed technique is applicable to any nucleotide sequences inferring evolutionary relationships between organisms.","PeriodicalId":196846,"journal":{"name":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Phylogenetic tree reconstruction using self-adaptive genetic algorithm\",\"authors\":\"A. Skourikhine\",\"doi\":\"10.1109/BIBE.2000.889599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a self-adaptive genetic algorithm (GA) for a maximum-likelihood reconstruction of phylogenetic trees using nucleotide sequence data. It resulted in a faster reconstruction of the trees with less computing power and automatic self-adjustment of settings of the optimization algorithm parameters. We focused on the use of GAs with self-adaptive control parameters and GA integration with phylogenetic tree representations. The developed technique is applicable to any nucleotide sequences inferring evolutionary relationships between organisms.\",\"PeriodicalId\":196846,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2000.889599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2000.889599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们开发了一种自适应遗传算法(GA),用于使用核苷酸序列数据进行系统发育树的最大似然重建。该方法可以在较小的计算能力下实现更快的树重建,并可以自动调整优化算法参数的设置。我们着重于使用具有自适应控制参数的遗传算法和具有系统发育树表示的遗传算法集成。所开发的技术适用于推断生物体之间进化关系的任何核苷酸序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogenetic tree reconstruction using self-adaptive genetic algorithm
We have developed a self-adaptive genetic algorithm (GA) for a maximum-likelihood reconstruction of phylogenetic trees using nucleotide sequence data. It resulted in a faster reconstruction of the trees with less computing power and automatic self-adjustment of settings of the optimization algorithm parameters. We focused on the use of GAs with self-adaptive control parameters and GA integration with phylogenetic tree representations. The developed technique is applicable to any nucleotide sequences inferring evolutionary relationships between organisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信