利用机器学习对少数派攻击进行分类

Amit Kumar, Vivek Kumar, Ashish Saini, Amrita Kumari, Vipin Kumar
{"title":"利用机器学习对少数派攻击进行分类","authors":"Amit Kumar, Vivek Kumar, Ashish Saini, Amrita Kumari, Vipin Kumar","doi":"10.1109/ICFIRTP56122.2022.10059437","DOIUrl":null,"url":null,"abstract":"In the digital age, the mass adoption of edge devices or Internet of Things (IoT) devices pose serious challenges to cybersecurity. Today, various new types of attacks including minority attacks are increasing due to the presence of intruders in the network. Furthermore, due to the complex behavior in network or IoT networks, these attacks cannot be detected by traditional algorithms. Therefore, this paper proposes an effective intrusion detection system to detect these attacks in network or IoT networks. Machine learning algorithms Decision Trees, Extra Trees, Gradient Boosted Trees, k-Nearest Neighbors and Random Forest classifiers are used to estimate the benchmark dataset CICIDS2017. Furthermore, the RFE (recursive feature elimination technique) is utilized to select the most suitable or optimal set of features for detecting minority attack.","PeriodicalId":413065,"journal":{"name":"2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification of Minority Attacks using Machine Learning\",\"authors\":\"Amit Kumar, Vivek Kumar, Ashish Saini, Amrita Kumari, Vipin Kumar\",\"doi\":\"10.1109/ICFIRTP56122.2022.10059437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the digital age, the mass adoption of edge devices or Internet of Things (IoT) devices pose serious challenges to cybersecurity. Today, various new types of attacks including minority attacks are increasing due to the presence of intruders in the network. Furthermore, due to the complex behavior in network or IoT networks, these attacks cannot be detected by traditional algorithms. Therefore, this paper proposes an effective intrusion detection system to detect these attacks in network or IoT networks. Machine learning algorithms Decision Trees, Extra Trees, Gradient Boosted Trees, k-Nearest Neighbors and Random Forest classifiers are used to estimate the benchmark dataset CICIDS2017. Furthermore, the RFE (recursive feature elimination technique) is utilized to select the most suitable or optimal set of features for detecting minority attack.\",\"PeriodicalId\":413065,\"journal\":{\"name\":\"2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFIRTP56122.2022.10059437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFIRTP56122.2022.10059437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在数字时代,边缘设备或物联网(IoT)设备的大规模采用对网络安全构成了严重挑战。目前,由于网络中入侵者的存在,包括少数派攻击在内的各种新型攻击正在增加。此外,由于网络或物联网网络中的复杂行为,这些攻击无法通过传统算法检测到。因此,本文提出了一种有效的入侵检测系统来检测网络或物联网网络中的这些攻击。使用机器学习算法决策树、额外树、梯度增强树、k近邻和随机森林分类器来估计基准数据集CICIDS2017。此外,利用RFE(递归特征消除技术)选择最适合或最优的特征集来检测少数派攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Minority Attacks using Machine Learning
In the digital age, the mass adoption of edge devices or Internet of Things (IoT) devices pose serious challenges to cybersecurity. Today, various new types of attacks including minority attacks are increasing due to the presence of intruders in the network. Furthermore, due to the complex behavior in network or IoT networks, these attacks cannot be detected by traditional algorithms. Therefore, this paper proposes an effective intrusion detection system to detect these attacks in network or IoT networks. Machine learning algorithms Decision Trees, Extra Trees, Gradient Boosted Trees, k-Nearest Neighbors and Random Forest classifiers are used to estimate the benchmark dataset CICIDS2017. Furthermore, the RFE (recursive feature elimination technique) is utilized to select the most suitable or optimal set of features for detecting minority attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信