Diego Lujan Villarreal, D. Schroeder, W. Krautschneider
{"title":"1000+电极阵列用于视网膜外假体的可行性研究","authors":"Diego Lujan Villarreal, D. Schroeder, W. Krautschneider","doi":"10.18178/ijpmbs.5.3.163-170","DOIUrl":null,"url":null,"abstract":"To improve resolution and achieve functional vision, it is required 1000 electrodes with minimum feature size at epiretinal prosthetic devices. This challenging aim, however, has a limitation as to accommodate 1000+ electrode array and be within the limits of charge density and temperature increase at the device. In this work, we simulated a ganglion cell ON-model with PEDOT-NaPSS arranged electrode array in a three-dimensional retina model using COMSOL-Matlab interface. We varied electrode size, pulse width and inter electrode-ganglion cell distance to analyze charge density and temperature increase at the device. With our results, we investigated the feasibility of using 1024 electrode array attaching 16 scalable chips of 64 electrodes each with a daisy chain configuration. For IEGD less than 10 μm, it is feasible to use 1024 array of electrodes with the following requirements: i) reduce electrode diameter to 2μm; ii) maximum output voltage of 1 V; iii) work with either 50 or 100μs low pulse duration; iv) 11.3mm electrode carrier area; v) PEDOTNaPSS electrode deposition and vi) circular electrodes. ","PeriodicalId":281523,"journal":{"name":"International Journal of Pharma Medicine and Biological Sciences","volume":"576 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feasibility Study of a 1000+ Electrode Array in Epiretinal Prosthesis\",\"authors\":\"Diego Lujan Villarreal, D. Schroeder, W. Krautschneider\",\"doi\":\"10.18178/ijpmbs.5.3.163-170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve resolution and achieve functional vision, it is required 1000 electrodes with minimum feature size at epiretinal prosthetic devices. This challenging aim, however, has a limitation as to accommodate 1000+ electrode array and be within the limits of charge density and temperature increase at the device. In this work, we simulated a ganglion cell ON-model with PEDOT-NaPSS arranged electrode array in a three-dimensional retina model using COMSOL-Matlab interface. We varied electrode size, pulse width and inter electrode-ganglion cell distance to analyze charge density and temperature increase at the device. With our results, we investigated the feasibility of using 1024 electrode array attaching 16 scalable chips of 64 electrodes each with a daisy chain configuration. For IEGD less than 10 μm, it is feasible to use 1024 array of electrodes with the following requirements: i) reduce electrode diameter to 2μm; ii) maximum output voltage of 1 V; iii) work with either 50 or 100μs low pulse duration; iv) 11.3mm electrode carrier area; v) PEDOTNaPSS electrode deposition and vi) circular electrodes. \",\"PeriodicalId\":281523,\"journal\":{\"name\":\"International Journal of Pharma Medicine and Biological Sciences\",\"volume\":\"576 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharma Medicine and Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijpmbs.5.3.163-170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharma Medicine and Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijpmbs.5.3.163-170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility Study of a 1000+ Electrode Array in Epiretinal Prosthesis
To improve resolution and achieve functional vision, it is required 1000 electrodes with minimum feature size at epiretinal prosthetic devices. This challenging aim, however, has a limitation as to accommodate 1000+ electrode array and be within the limits of charge density and temperature increase at the device. In this work, we simulated a ganglion cell ON-model with PEDOT-NaPSS arranged electrode array in a three-dimensional retina model using COMSOL-Matlab interface. We varied electrode size, pulse width and inter electrode-ganglion cell distance to analyze charge density and temperature increase at the device. With our results, we investigated the feasibility of using 1024 electrode array attaching 16 scalable chips of 64 electrodes each with a daisy chain configuration. For IEGD less than 10 μm, it is feasible to use 1024 array of electrodes with the following requirements: i) reduce electrode diameter to 2μm; ii) maximum output voltage of 1 V; iii) work with either 50 or 100μs low pulse duration; iv) 11.3mm electrode carrier area; v) PEDOTNaPSS electrode deposition and vi) circular electrodes.