使用MALDI-MS数据鉴定前列腺癌生物标志物:初步结果

V. Mantena, Wenjuan Jiang, Jiang Li, Rick McKenzie
{"title":"使用MALDI-MS数据鉴定前列腺癌生物标志物:初步结果","authors":"V. Mantena, Wenjuan Jiang, Jiang Li, Rick McKenzie","doi":"10.1109/LISSA.2009.4906723","DOIUrl":null,"url":null,"abstract":"We present a computational framework to identify prostate specific cancer biomarkers using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) tissue imaging data collected at the Eastern Virginia Medical School (EVMS). Protein profiles of a tumor and its surrounding area from one prostate tissue sample were analyzed. The data contain 974 spectra (27 cancer, 947 normal).We proposed a pipeline to configure our previously developed feature selection and classification algorithms for biomarker identification. We also compared our algorithms with other popular computational models. Our feature selection algorithm identified three peaks (proteins) which obtained high sensitivities and specificities in a five-fold cross validation experiment.","PeriodicalId":285171,"journal":{"name":"2009 IEEE/NIH Life Science Systems and Applications Workshop","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Prostate cancer biomarker identification using MALDI-MS DATA: Initial results\",\"authors\":\"V. Mantena, Wenjuan Jiang, Jiang Li, Rick McKenzie\",\"doi\":\"10.1109/LISSA.2009.4906723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a computational framework to identify prostate specific cancer biomarkers using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) tissue imaging data collected at the Eastern Virginia Medical School (EVMS). Protein profiles of a tumor and its surrounding area from one prostate tissue sample were analyzed. The data contain 974 spectra (27 cancer, 947 normal).We proposed a pipeline to configure our previously developed feature selection and classification algorithms for biomarker identification. We also compared our algorithms with other popular computational models. Our feature selection algorithm identified three peaks (proteins) which obtained high sensitivities and specificities in a five-fold cross validation experiment.\",\"PeriodicalId\":285171,\"journal\":{\"name\":\"2009 IEEE/NIH Life Science Systems and Applications Workshop\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE/NIH Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISSA.2009.4906723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/NIH Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2009.4906723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一个计算框架,利用基质辅助激光解吸/电离质谱(MALDI-MS)组织成像数据,从东弗吉尼亚医学院(EVMS)收集来识别前列腺特异性癌症生物标志物。从一个前列腺组织样本中分析了肿瘤及其周围区域的蛋白质谱。数据包含974个光谱(癌27个,正常947个)。我们提出了一个管道来配置我们以前开发的生物标志物识别的特征选择和分类算法。我们还将我们的算法与其他流行的计算模型进行了比较。我们的特征选择算法确定了三个峰(蛋白质),在五倍交叉验证实验中获得了高灵敏度和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prostate cancer biomarker identification using MALDI-MS DATA: Initial results
We present a computational framework to identify prostate specific cancer biomarkers using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) tissue imaging data collected at the Eastern Virginia Medical School (EVMS). Protein profiles of a tumor and its surrounding area from one prostate tissue sample were analyzed. The data contain 974 spectra (27 cancer, 947 normal).We proposed a pipeline to configure our previously developed feature selection and classification algorithms for biomarker identification. We also compared our algorithms with other popular computational models. Our feature selection algorithm identified three peaks (proteins) which obtained high sensitivities and specificities in a five-fold cross validation experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信