Vassilios Vonikakis, Dimitris Chrysostomou, R. Kouskouridas, A. Gasteratos
{"title":"利用局部对比度增强提高特征检测的鲁棒性","authors":"Vassilios Vonikakis, Dimitris Chrysostomou, R. Kouskouridas, A. Gasteratos","doi":"10.1109/IST.2012.6295482","DOIUrl":null,"url":null,"abstract":"This paper presents a new feature detector, with improved local contrast performance. The proposed method is based on an improved non-linear version of the classic Difference of Gaussians, which exhibits increased sensitivity to low contrast. Additionally, it does not employ computationally expensive or memory demanding routines. In order to evaluate the degree of illumination invariance that the proposed, as well as, other existing detectors exhibit, a new benchmark image database has been created. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts greater number of features, with high level of repeatability, compared to other existing ones. These results are evident for both uniform and non-uniform illumination, evincing a favorable usage of the proposed feature detector by robotic platforms working in outdoor working environments.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Improving the robustness in feature detection by local contrast enhancement\",\"authors\":\"Vassilios Vonikakis, Dimitris Chrysostomou, R. Kouskouridas, A. Gasteratos\",\"doi\":\"10.1109/IST.2012.6295482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new feature detector, with improved local contrast performance. The proposed method is based on an improved non-linear version of the classic Difference of Gaussians, which exhibits increased sensitivity to low contrast. Additionally, it does not employ computationally expensive or memory demanding routines. In order to evaluate the degree of illumination invariance that the proposed, as well as, other existing detectors exhibit, a new benchmark image database has been created. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts greater number of features, with high level of repeatability, compared to other existing ones. These results are evident for both uniform and non-uniform illumination, evincing a favorable usage of the proposed feature detector by robotic platforms working in outdoor working environments.\",\"PeriodicalId\":213330,\"journal\":{\"name\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2012.6295482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the robustness in feature detection by local contrast enhancement
This paper presents a new feature detector, with improved local contrast performance. The proposed method is based on an improved non-linear version of the classic Difference of Gaussians, which exhibits increased sensitivity to low contrast. Additionally, it does not employ computationally expensive or memory demanding routines. In order to evaluate the degree of illumination invariance that the proposed, as well as, other existing detectors exhibit, a new benchmark image database has been created. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts greater number of features, with high level of repeatability, compared to other existing ones. These results are evident for both uniform and non-uniform illumination, evincing a favorable usage of the proposed feature detector by robotic platforms working in outdoor working environments.