移动机器人编队统一控制方案

C. Rosales, F. Rossomando, L. Salinas, J. Gimenez, R. Carelli
{"title":"移动机器人编队统一控制方案","authors":"C. Rosales, F. Rossomando, L. Salinas, J. Gimenez, R. Carelli","doi":"10.1109/ICUAS51884.2021.9476675","DOIUrl":null,"url":null,"abstract":"This paper presents a unified control for a formation of mobile robots in positioning, path following, and trajectory tracking tasks. The control is based on a kinematic model of the formation in combination with a dynamic compensator based on a neural sliding mode control to guarantee a good tracking of reference velocities. Stability analysis of the complete system is given by using the Lyapunov theory. Finally, the control scheme is validated through simulations.","PeriodicalId":423195,"journal":{"name":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified control solution for mobile robot formations\",\"authors\":\"C. Rosales, F. Rossomando, L. Salinas, J. Gimenez, R. Carelli\",\"doi\":\"10.1109/ICUAS51884.2021.9476675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a unified control for a formation of mobile robots in positioning, path following, and trajectory tracking tasks. The control is based on a kinematic model of the formation in combination with a dynamic compensator based on a neural sliding mode control to guarantee a good tracking of reference velocities. Stability analysis of the complete system is given by using the Lyapunov theory. Finally, the control scheme is validated through simulations.\",\"PeriodicalId\":423195,\"journal\":{\"name\":\"2021 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS51884.2021.9476675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS51884.2021.9476675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种移动机器人编队在定位、路径跟踪和轨迹跟踪任务中的统一控制方法。该控制基于地层的运动学模型,并结合基于神经滑模控制的动态补偿器,以保证良好的参考速度跟踪。利用李雅普诺夫理论给出了系统的稳定性分析。最后,通过仿真对控制方案进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified control solution for mobile robot formations
This paper presents a unified control for a formation of mobile robots in positioning, path following, and trajectory tracking tasks. The control is based on a kinematic model of the formation in combination with a dynamic compensator based on a neural sliding mode control to guarantee a good tracking of reference velocities. Stability analysis of the complete system is given by using the Lyapunov theory. Finally, the control scheme is validated through simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信