类元音区域检测的深度信念网络探索

B. K. Khonglah, B. Sarma, S. Prasanna
{"title":"类元音区域检测的深度信念网络探索","authors":"B. K. Khonglah, B. Sarma, S. Prasanna","doi":"10.1109/INDICON.2014.7030496","DOIUrl":null,"url":null,"abstract":"This work explores Deep Belief Networks (DBN) for the task of detecting Vowel-like regions (VLRs). Vowels and semivowels are considered as VLRs. By using vocal tract features at the input layer of DBN, we extract an evidence for VLRs by transforming the vocal tract features through multiple non-linear hidden layers. The linear classifier is used to predict the class of evidence, i.e.,whether it is VLR or not. The DBN method is then combined with excitation source (ES) based method for VLRs detection. Even though DBN method provides comparable performance with the existing methods, the combination provides improved performance confirming the different way of modeling VLR information in the DBN.","PeriodicalId":409794,"journal":{"name":"2014 Annual IEEE India Conference (INDICON)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Exploration of Deep Belief Networks for Vowel-like regions detection\",\"authors\":\"B. K. Khonglah, B. Sarma, S. Prasanna\",\"doi\":\"10.1109/INDICON.2014.7030496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores Deep Belief Networks (DBN) for the task of detecting Vowel-like regions (VLRs). Vowels and semivowels are considered as VLRs. By using vocal tract features at the input layer of DBN, we extract an evidence for VLRs by transforming the vocal tract features through multiple non-linear hidden layers. The linear classifier is used to predict the class of evidence, i.e.,whether it is VLR or not. The DBN method is then combined with excitation source (ES) based method for VLRs detection. Even though DBN method provides comparable performance with the existing methods, the combination provides improved performance confirming the different way of modeling VLR information in the DBN.\",\"PeriodicalId\":409794,\"journal\":{\"name\":\"2014 Annual IEEE India Conference (INDICON)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2014.7030496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2014.7030496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本研究探索了深度信念网络(DBN)用于检测类元音区域(VLRs)的任务。元音和半元音被认为是vlr。通过在DBN的输入层使用声道特征,通过多个非线性隐藏层对声道特征进行变换,提取VLRs证据。线性分类器用于预测证据的类别,即是否为VLR。然后将DBN方法与基于激励源(ES)的方法相结合用于VLRs检测。尽管DBN方法的性能与现有方法相当,但这种组合提供了改进的性能,证实了DBN中VLR信息建模的不同方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of Deep Belief Networks for Vowel-like regions detection
This work explores Deep Belief Networks (DBN) for the task of detecting Vowel-like regions (VLRs). Vowels and semivowels are considered as VLRs. By using vocal tract features at the input layer of DBN, we extract an evidence for VLRs by transforming the vocal tract features through multiple non-linear hidden layers. The linear classifier is used to predict the class of evidence, i.e.,whether it is VLR or not. The DBN method is then combined with excitation source (ES) based method for VLRs detection. Even though DBN method provides comparable performance with the existing methods, the combination provides improved performance confirming the different way of modeling VLR information in the DBN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信