移动机器人实时避障的决策理论方法

Huosheng Hu, M. Brady, P. P. Smith
{"title":"移动机器人实时避障的决策理论方法","authors":"Huosheng Hu, M. Brady, P. P. Smith","doi":"10.1109/IROS.1993.583825","DOIUrl":null,"url":null,"abstract":"Investigates how a car-like mobile robot handles unexpected static obstacles while following an optimal path planned by the global path planner. To find an optimal solution of the problem, the obstacle avoidance problem is formulated as a decision theoretic approach. The optimal decision rule we seek is to minimize the Bayes risk by trading off between deliberative maneuver and the alternatives. Real-time implementation is emphasized in order to provide a framework for real-world applications.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A decision theoretic approach to real-time obstacle avoidance for a mobile robot\",\"authors\":\"Huosheng Hu, M. Brady, P. P. Smith\",\"doi\":\"10.1109/IROS.1993.583825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigates how a car-like mobile robot handles unexpected static obstacles while following an optimal path planned by the global path planner. To find an optimal solution of the problem, the obstacle avoidance problem is formulated as a decision theoretic approach. The optimal decision rule we seek is to minimize the Bayes risk by trading off between deliberative maneuver and the alternatives. Real-time implementation is emphasized in order to provide a framework for real-world applications.\",\"PeriodicalId\":299306,\"journal\":{\"name\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1993.583825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了一个类似汽车的移动机器人如何在遵循全局路径规划器规划的最优路径时处理意外的静态障碍物。为了找到问题的最优解,将避障问题表述为一种决策理论方法。我们所寻求的最优决策规则是在审慎操作和备选方案之间进行权衡,使贝叶斯风险最小化。强调实时实现是为了为现实世界的应用程序提供一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A decision theoretic approach to real-time obstacle avoidance for a mobile robot
Investigates how a car-like mobile robot handles unexpected static obstacles while following an optimal path planned by the global path planner. To find an optimal solution of the problem, the obstacle avoidance problem is formulated as a decision theoretic approach. The optimal decision rule we seek is to minimize the Bayes risk by trading off between deliberative maneuver and the alternatives. Real-time implementation is emphasized in order to provide a framework for real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信