基于线分组和边缘密度方法的车牌区域提取

Gi-Su Heo, Minwoo Kim, Insook Jung, Duk-Ryong Lee, Il-Seok Oh
{"title":"基于线分组和边缘密度方法的车牌区域提取","authors":"Gi-Su Heo, Minwoo Kim, Insook Jung, Duk-Ryong Lee, Il-Seok Oh","doi":"10.1109/ISITC.2007.49","DOIUrl":null,"url":null,"abstract":"In this paper we propose the double chance algorithm as an approach to car license plate extraction. The first algorithm extracts the line segments and groups them based on a set of geometrical conditions. It detects a rectangle at the plate boundary accurately. The second algorithm finds plate regions at which the vertical edges appear densest. We evaluated the double chance framework with and without the verification process. The verification process is performed using the character segmentation module. Using a real-life database collected by the speed enforcement camera, we obtained a high success rate of 99.45%, through use of the double chance approach with verification.","PeriodicalId":394071,"journal":{"name":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Extraction of Car License Plate Regions Using Line Grouping and Edge Density Methods\",\"authors\":\"Gi-Su Heo, Minwoo Kim, Insook Jung, Duk-Ryong Lee, Il-Seok Oh\",\"doi\":\"10.1109/ISITC.2007.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose the double chance algorithm as an approach to car license plate extraction. The first algorithm extracts the line segments and groups them based on a set of geometrical conditions. It detects a rectangle at the plate boundary accurately. The second algorithm finds plate regions at which the vertical edges appear densest. We evaluated the double chance framework with and without the verification process. The verification process is performed using the character segmentation module. Using a real-life database collected by the speed enforcement camera, we obtained a high success rate of 99.45%, through use of the double chance approach with verification.\",\"PeriodicalId\":394071,\"journal\":{\"name\":\"2007 International Symposium on Information Technology Convergence (ISITC 2007)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Information Technology Convergence (ISITC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITC.2007.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITC.2007.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了一种基于双机会算法的车牌提取方法。第一种算法提取线段,并根据一组几何条件对线段进行分组。它能准确地检测到板块边界处的矩形。第二种算法找到垂直边缘最密集的板块区域。我们评估了有和没有验证过程的双重机会框架。验证过程是使用字符分割模块执行的。利用测速摄像机采集的真实数据库,采用双机会方法进行验证,获得了99.45%的高成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of Car License Plate Regions Using Line Grouping and Edge Density Methods
In this paper we propose the double chance algorithm as an approach to car license plate extraction. The first algorithm extracts the line segments and groups them based on a set of geometrical conditions. It detects a rectangle at the plate boundary accurately. The second algorithm finds plate regions at which the vertical edges appear densest. We evaluated the double chance framework with and without the verification process. The verification process is performed using the character segmentation module. Using a real-life database collected by the speed enforcement camera, we obtained a high success rate of 99.45%, through use of the double chance approach with verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信