{"title":"具有两次延迟和再感染的媒介传播疾病模型的稳定性和Hopf分岔分析","authors":"Yanxia Zhang, Long Li, Junjian Huang, Yanjun Liu","doi":"10.1155/2021/6648959","DOIUrl":null,"url":null,"abstract":"In this paper, a vector-borne disease model with two delays and reinfection is established and considered. First of all, the existence of the equilibrium of the system, under different cases of two delays, is discussed through analyzing the corresponding characteristic equation of the linear system. Some conditions that the system undergoes Hopf bifurcation at the endemic equilibrium are obtained. Furthermore, by employing the normal form method and the center manifold theorem for delay differential equations, some explicit formulas used to describe the properties of bifurcating periodic solutions are derived. Finally, the numerical examples and simulations are presented to verify our theoretical conclusions. Meanwhile, the influences of the degree of partial protection for recovered people acquired by a primary infection on the endemic equilibrium and the critical values of the two delays are analyzed.","PeriodicalId":182719,"journal":{"name":"Comput. Math. Methods Medicine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stability and Hopf Bifurcation Analysis of a Vector-Borne Disease Model with Two Delays and Reinfection\",\"authors\":\"Yanxia Zhang, Long Li, Junjian Huang, Yanjun Liu\",\"doi\":\"10.1155/2021/6648959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a vector-borne disease model with two delays and reinfection is established and considered. First of all, the existence of the equilibrium of the system, under different cases of two delays, is discussed through analyzing the corresponding characteristic equation of the linear system. Some conditions that the system undergoes Hopf bifurcation at the endemic equilibrium are obtained. Furthermore, by employing the normal form method and the center manifold theorem for delay differential equations, some explicit formulas used to describe the properties of bifurcating periodic solutions are derived. Finally, the numerical examples and simulations are presented to verify our theoretical conclusions. Meanwhile, the influences of the degree of partial protection for recovered people acquired by a primary infection on the endemic equilibrium and the critical values of the two delays are analyzed.\",\"PeriodicalId\":182719,\"journal\":{\"name\":\"Comput. Math. Methods Medicine\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Methods Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6648959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Methods Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6648959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability and Hopf Bifurcation Analysis of a Vector-Borne Disease Model with Two Delays and Reinfection
In this paper, a vector-borne disease model with two delays and reinfection is established and considered. First of all, the existence of the equilibrium of the system, under different cases of two delays, is discussed through analyzing the corresponding characteristic equation of the linear system. Some conditions that the system undergoes Hopf bifurcation at the endemic equilibrium are obtained. Furthermore, by employing the normal form method and the center manifold theorem for delay differential equations, some explicit formulas used to describe the properties of bifurcating periodic solutions are derived. Finally, the numerical examples and simulations are presented to verify our theoretical conclusions. Meanwhile, the influences of the degree of partial protection for recovered people acquired by a primary infection on the endemic equilibrium and the critical values of the two delays are analyzed.