基于随机投影的高效GRAPPA重建

Jingyuan Lyu, Yuchou Chang, L. Ying
{"title":"基于随机投影的高效GRAPPA重建","authors":"Jingyuan Lyu, Yuchou Chang, L. Ying","doi":"10.1109/ISBI.2013.6556571","DOIUrl":null,"url":null,"abstract":"As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient GRAPPA reconstruction using random projection\",\"authors\":\"Jingyuan Lyu, Yuchou Chang, L. Ying\",\"doi\":\"10.1109/ISBI.2013.6556571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

作为一种数据驱动技术,GRAPPA已被广泛应用于MRI平行重建。在GRAPPA中,需要大量的校准数据来进行准确的校准和估计。然而,随着需要求解的方程数量的增加,计算时间也随之增加,这在三维重建中尤为严重。为了解决这个问题,已经开发了许多方法来将大量的物理通道压缩为更少的虚拟通道。在本文中,我们从不同的角度来解决复杂性问题。我们建议在校准步骤中使用随机投影来降低问题的维数。实验结果表明,将数据随机投影到低维子空间的结果与传统的GRAPPA相当,但计算成本明显降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient GRAPPA reconstruction using random projection
As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信