Kuramoto-Sivashinsky方程解的指数稳定性

Qimin Zhang
{"title":"Kuramoto-Sivashinsky方程解的指数稳定性","authors":"Qimin Zhang","doi":"10.1109/WCICA.2008.4594318","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the exponential stability, for a class of stochastic Kuramoto-Sivashinsky equation. The analyses consist of using Ito formula, Burkholder-Davis-Gundy inequality, Gronwall lemma and the criteria is also obtained for the exponential stability.","PeriodicalId":377192,"journal":{"name":"2008 7th World Congress on Intelligent Control and Automation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability of solution for the Kuramoto-Sivashinsky equation\",\"authors\":\"Qimin Zhang\",\"doi\":\"10.1109/WCICA.2008.4594318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the exponential stability, for a class of stochastic Kuramoto-Sivashinsky equation. The analyses consist of using Ito formula, Burkholder-Davis-Gundy inequality, Gronwall lemma and the criteria is also obtained for the exponential stability.\",\"PeriodicalId\":377192,\"journal\":{\"name\":\"2008 7th World Congress on Intelligent Control and Automation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 7th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2008.4594318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 7th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2008.4594318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类随机Kuramoto-Sivashinsky方程的指数稳定性。利用Ito公式、Burkholder-Davis-Gundy不等式、Gronwall引理进行了分析,并给出了指数稳定性的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability of solution for the Kuramoto-Sivashinsky equation
In this paper, we discuss the exponential stability, for a class of stochastic Kuramoto-Sivashinsky equation. The analyses consist of using Ito formula, Burkholder-Davis-Gundy inequality, Gronwall lemma and the criteria is also obtained for the exponential stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信