Garry Jean-Pierre, N. Altin, Ahmad El Shafei, A. Nasiri
{"title":"基于Lyapunov函数的级联h桥多电平有源整流器控制方案","authors":"Garry Jean-Pierre, N. Altin, Ahmad El Shafei, A. Nasiri","doi":"10.1109/APEC39645.2020.9124234","DOIUrl":null,"url":null,"abstract":"The cascaded H-bridge multilevel active rectifier is a prominent converter configuration. It presents compelling advantages, including high adjustability for a number of applications, such as in solid-state transformers, traction applications, medium and high power motor drives and battery chargers. However, when the H-bridge is operating under an unbalanced load and asymmetrical voltage conditions, it becomes important to design advanced control strategies to maintain the stability of the system. In this study, a Lyapunov-function based control method is proposed for controlling the single-phase cascaded H-bridge active rectifier to achieve global asymptotic stability. A capacitor voltage feedback is added to the conventional Lyapunov-function based stabilizing control method to minimize the resonance of the LCL filter. Additionally, a Proportional-Resonant (PR) control approach is adopted to obtain the reference current signal. This increases the robustness of the current control scheme. A DC voltage balancing control procedure is also employed to prevent the unbalanced DC voltage conditions among the H-bridges. The DC voltage is controlled via a PI controller. The capability of the control approach is verified with simulation and experimental studies.","PeriodicalId":171455,"journal":{"name":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Control Scheme Based on Lyapunov Function for Cascaded H-Bridge Multilevel Active Rectifiers\",\"authors\":\"Garry Jean-Pierre, N. Altin, Ahmad El Shafei, A. Nasiri\",\"doi\":\"10.1109/APEC39645.2020.9124234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cascaded H-bridge multilevel active rectifier is a prominent converter configuration. It presents compelling advantages, including high adjustability for a number of applications, such as in solid-state transformers, traction applications, medium and high power motor drives and battery chargers. However, when the H-bridge is operating under an unbalanced load and asymmetrical voltage conditions, it becomes important to design advanced control strategies to maintain the stability of the system. In this study, a Lyapunov-function based control method is proposed for controlling the single-phase cascaded H-bridge active rectifier to achieve global asymptotic stability. A capacitor voltage feedback is added to the conventional Lyapunov-function based stabilizing control method to minimize the resonance of the LCL filter. Additionally, a Proportional-Resonant (PR) control approach is adopted to obtain the reference current signal. This increases the robustness of the current control scheme. A DC voltage balancing control procedure is also employed to prevent the unbalanced DC voltage conditions among the H-bridges. The DC voltage is controlled via a PI controller. The capability of the control approach is verified with simulation and experimental studies.\",\"PeriodicalId\":171455,\"journal\":{\"name\":\"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC39645.2020.9124234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC39645.2020.9124234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Control Scheme Based on Lyapunov Function for Cascaded H-Bridge Multilevel Active Rectifiers
The cascaded H-bridge multilevel active rectifier is a prominent converter configuration. It presents compelling advantages, including high adjustability for a number of applications, such as in solid-state transformers, traction applications, medium and high power motor drives and battery chargers. However, when the H-bridge is operating under an unbalanced load and asymmetrical voltage conditions, it becomes important to design advanced control strategies to maintain the stability of the system. In this study, a Lyapunov-function based control method is proposed for controlling the single-phase cascaded H-bridge active rectifier to achieve global asymptotic stability. A capacitor voltage feedback is added to the conventional Lyapunov-function based stabilizing control method to minimize the resonance of the LCL filter. Additionally, a Proportional-Resonant (PR) control approach is adopted to obtain the reference current signal. This increases the robustness of the current control scheme. A DC voltage balancing control procedure is also employed to prevent the unbalanced DC voltage conditions among the H-bridges. The DC voltage is controlled via a PI controller. The capability of the control approach is verified with simulation and experimental studies.