基于神经网络的环振子快速蒙特卡罗分析方法

T. Choi, Hanwool Jeong, Seong-ook Jung
{"title":"基于神经网络的环振子快速蒙特卡罗分析方法","authors":"T. Choi, Hanwool Jeong, Seong-ook Jung","doi":"10.23919/ELINFOCOM.2018.8330633","DOIUrl":null,"url":null,"abstract":"Because of the slow speed of SPICE Monte-Carlo (MC) simulation, the limited number of MC samples causes inaccuracy for statistical analysis of ring oscillators. In this paper, we propose the MC simulation method of ring oscillators with artificial neural networks, which shows 5 order faster than SPICE. It is shown that the figure of merits of the ring oscillator can be accurately estimated through simple neural networks training with random samples of SPICE data.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Monte-Carlo analysis method of ring oscillators with neural networks\",\"authors\":\"T. Choi, Hanwool Jeong, Seong-ook Jung\",\"doi\":\"10.23919/ELINFOCOM.2018.8330633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the slow speed of SPICE Monte-Carlo (MC) simulation, the limited number of MC samples causes inaccuracy for statistical analysis of ring oscillators. In this paper, we propose the MC simulation method of ring oscillators with artificial neural networks, which shows 5 order faster than SPICE. It is shown that the figure of merits of the ring oscillator can be accurately estimated through simple neural networks training with random samples of SPICE data.\",\"PeriodicalId\":413646,\"journal\":{\"name\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELINFOCOM.2018.8330633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于SPICE蒙特卡罗(MC)模拟速度慢,MC样本数量有限,导致环振子统计分析不准确。本文提出了基于人工神经网络的环振子MC仿真方法,其仿真速度比SPICE快5个数量级。结果表明,利用SPICE数据的随机样本进行简单的神经网络训练,可以准确地估计出环形振荡器的优点图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Monte-Carlo analysis method of ring oscillators with neural networks
Because of the slow speed of SPICE Monte-Carlo (MC) simulation, the limited number of MC samples causes inaccuracy for statistical analysis of ring oscillators. In this paper, we propose the MC simulation method of ring oscillators with artificial neural networks, which shows 5 order faster than SPICE. It is shown that the figure of merits of the ring oscillator can be accurately estimated through simple neural networks training with random samples of SPICE data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信