S. Medić, N. Duraković, Vesna Bogdanović, T. Grbić, I. Lončarević, L. Budinski-Petković
{"title":"与区间值⊕测度的g积分相关的距离函数","authors":"S. Medić, N. Duraković, Vesna Bogdanović, T. Grbić, I. Lončarević, L. Budinski-Petković","doi":"10.1109/SISY.2017.8080530","DOIUrl":null,"url":null,"abstract":"In the classical measure theory, the distance between two m-integrable functions f<inf>1</inf> and f<inf>2</inf> can be defined as L<sup>1</sup> norm of |f<inf>1</inf> − f<inf>2</inf>|, i.e. d(f<inf>1</inf>, f<inf>2</inf>) = ∫<inf>X</inf> |f<inf>1</inf> − f<inf>2</inf>|dm. Instead of the Lebesgue integral, the g-integrals with respect to the interval-valued ⊕-measure [μ<inf>l</inf>, μ<inf>r</inf>], where g is an increasing function, is considered, and instead of the distance |f<inf>1</inf> − f<inf>2</inf>|, the function d<inf>⊕</inf>(f<inf>1</inf>, f<inf>2</inf>) is considered. The defined distance is an interval-valued distance function between two measurable functions which maps a nonempty set X to [a, b], where ([a, b], ⊕, ⊙) is a g-semiring with an increasing generator g.","PeriodicalId":352891,"journal":{"name":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"470 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance function associated with the g-integral with respect to the interval-valued ⊕-measure\",\"authors\":\"S. Medić, N. Duraković, Vesna Bogdanović, T. Grbić, I. Lončarević, L. Budinski-Petković\",\"doi\":\"10.1109/SISY.2017.8080530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the classical measure theory, the distance between two m-integrable functions f<inf>1</inf> and f<inf>2</inf> can be defined as L<sup>1</sup> norm of |f<inf>1</inf> − f<inf>2</inf>|, i.e. d(f<inf>1</inf>, f<inf>2</inf>) = ∫<inf>X</inf> |f<inf>1</inf> − f<inf>2</inf>|dm. Instead of the Lebesgue integral, the g-integrals with respect to the interval-valued ⊕-measure [μ<inf>l</inf>, μ<inf>r</inf>], where g is an increasing function, is considered, and instead of the distance |f<inf>1</inf> − f<inf>2</inf>|, the function d<inf>⊕</inf>(f<inf>1</inf>, f<inf>2</inf>) is considered. The defined distance is an interval-valued distance function between two measurable functions which maps a nonempty set X to [a, b], where ([a, b], ⊕, ⊙) is a g-semiring with an increasing generator g.\",\"PeriodicalId\":352891,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"470 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2017.8080530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2017.8080530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distance function associated with the g-integral with respect to the interval-valued ⊕-measure
In the classical measure theory, the distance between two m-integrable functions f1 and f2 can be defined as L1 norm of |f1 − f2|, i.e. d(f1, f2) = ∫X |f1 − f2|dm. Instead of the Lebesgue integral, the g-integrals with respect to the interval-valued ⊕-measure [μl, μr], where g is an increasing function, is considered, and instead of the distance |f1 − f2|, the function d⊕(f1, f2) is considered. The defined distance is an interval-valued distance function between two measurable functions which maps a nonempty set X to [a, b], where ([a, b], ⊕, ⊙) is a g-semiring with an increasing generator g.