L. Pierantoni, M. Bozzi, R. Moro, D. Mencarelli, S. Bellucci
{"title":"静电掺杂石墨烯的应用:微波衰减器的分析","authors":"L. Pierantoni, M. Bozzi, R. Moro, D. Mencarelli, S. Bellucci","doi":"10.1109/NEMO.2014.6995716","DOIUrl":null,"url":null,"abstract":"In this contribution, the electrostatic tunability of graphene is exploited in order to fabricate compact and effective microwave filters, namely field attenuators. A graphene patch of millimeter size is placed across the air gap of a discontinued microstrip-line, and tuned by means of an electrostatic bias applied by a high impedance line, that is, in turns, de-coupled from the microwave filter at center-band frequency. Results show that the filter response is strongly dependent on the external bias, and this promises not only for unprecedented performances, in terms of mass, volume and power consumption, but also for possible integration of graphene in a wide class of standard microwave devices.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On the use of electrostatically doped graphene: Analysis of microwave attenuators\",\"authors\":\"L. Pierantoni, M. Bozzi, R. Moro, D. Mencarelli, S. Bellucci\",\"doi\":\"10.1109/NEMO.2014.6995716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, the electrostatic tunability of graphene is exploited in order to fabricate compact and effective microwave filters, namely field attenuators. A graphene patch of millimeter size is placed across the air gap of a discontinued microstrip-line, and tuned by means of an electrostatic bias applied by a high impedance line, that is, in turns, de-coupled from the microwave filter at center-band frequency. Results show that the filter response is strongly dependent on the external bias, and this promises not only for unprecedented performances, in terms of mass, volume and power consumption, but also for possible integration of graphene in a wide class of standard microwave devices.\",\"PeriodicalId\":273349,\"journal\":{\"name\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO.2014.6995716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the use of electrostatically doped graphene: Analysis of microwave attenuators
In this contribution, the electrostatic tunability of graphene is exploited in order to fabricate compact and effective microwave filters, namely field attenuators. A graphene patch of millimeter size is placed across the air gap of a discontinued microstrip-line, and tuned by means of an electrostatic bias applied by a high impedance line, that is, in turns, de-coupled from the microwave filter at center-band frequency. Results show that the filter response is strongly dependent on the external bias, and this promises not only for unprecedented performances, in terms of mass, volume and power consumption, but also for possible integration of graphene in a wide class of standard microwave devices.