偶移正交序列的性质

S. Matsufuji, T. Matsumoto, K. Funakoshi
{"title":"偶移正交序列的性质","authors":"S. Matsufuji, T. Matsumoto, K. Funakoshi","doi":"10.1109/IWSDA.2007.4408353","DOIUrl":null,"url":null,"abstract":"This paper investigates properties of the even-shift orthogonal sequence of length 2n, whose out-of-phase aperiodic auto-correlation function takes zero at any even shift. It is shown that the halves of all E-sequences with odd n produced by logic functions are balanced sequences, whose elements 1 and -1 appear half, and there is not any balanced e-sequence for even n. Furthermore it is also shown that the aperiodic auto-correlation function possesses low values at odd shifts.","PeriodicalId":303512,"journal":{"name":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Properties of Even-Shift Orthogonal Sequences\",\"authors\":\"S. Matsufuji, T. Matsumoto, K. Funakoshi\",\"doi\":\"10.1109/IWSDA.2007.4408353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates properties of the even-shift orthogonal sequence of length 2n, whose out-of-phase aperiodic auto-correlation function takes zero at any even shift. It is shown that the halves of all E-sequences with odd n produced by logic functions are balanced sequences, whose elements 1 and -1 appear half, and there is not any balanced e-sequence for even n. Furthermore it is also shown that the aperiodic auto-correlation function possesses low values at odd shifts.\",\"PeriodicalId\":303512,\"journal\":{\"name\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2007.4408353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2007.4408353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

研究了长度为2n的偶移正交序列的性质,该序列的相外非周期自相关函数在任意偶移处取零。证明了逻辑函数产生的所有n为奇数的e序列的一半都是平衡序列,其中元素1和-1都是一半,并且不存在偶数n的平衡e序列。此外,还证明了非周期自相关函数在奇移处具有低值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of Even-Shift Orthogonal Sequences
This paper investigates properties of the even-shift orthogonal sequence of length 2n, whose out-of-phase aperiodic auto-correlation function takes zero at any even shift. It is shown that the halves of all E-sequences with odd n produced by logic functions are balanced sequences, whose elements 1 and -1 appear half, and there is not any balanced e-sequence for even n. Furthermore it is also shown that the aperiodic auto-correlation function possesses low values at odd shifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信