利用模糊控制器提高尼日利亚330kv输电网的频率稳定性

N. B. Ngang, B. Kazeem
{"title":"利用模糊控制器提高尼日利亚330kv输电网的频率稳定性","authors":"N. B. Ngang, B. Kazeem","doi":"10.11648/J.EPES.20211003.12","DOIUrl":null,"url":null,"abstract":"The frequency instability observed in the power transmission network was mainly as a result of the per unit volts not falling within 0.95 through 1.05 P.U, volts. This has caused constant power failure in our transmission net work. This sad situation of power failure noticed in the power transmission network is contained by introducing an improvement in frequency stability of the Nigerian 330kV transmission network using fuzzy controller. It was achieved by first characterizing the 330kv transmission network by running load flow on the network, designing conventional SIMULINK model for improving frequency stability of the Nigerian 330kv transmission network, designing a rule base that makes these faulty buses to attain stability, integrating the designed rule to the conventional SIMULINK model for improving frequency stability of the Nigerian 330kv transmission network. The results obtained are conventional bus 1 per unit volts at 4s through 10s is 0.94. On the other hand, when fuzzy controller is incorporated in the system it is 1.043P.U volts. This shows that there is frequency stability when fuzzy controller is incorporated in the system since the per unit volts fall within the range of 0.95 through 1.05 P.U. volt and conventional per unit volts is 0.944 which makes the frequency unstable since the volts does not attain stability. Meanwhile, when fuzzy controller is incorporated in the system the per unit volts is 1.047. With these results, it shows that there is frequency stability when fuzzy controller is imbibed in the system. Since the per unit volt fall within the stability range of 0.95 through 1.05P.U. Volts.","PeriodicalId":125088,"journal":{"name":"American Journal of Electrical Power and Energy Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Frequency Stability of the Nigerian 330kv Transmission Network Using Fuzzy Controller\",\"authors\":\"N. B. Ngang, B. Kazeem\",\"doi\":\"10.11648/J.EPES.20211003.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequency instability observed in the power transmission network was mainly as a result of the per unit volts not falling within 0.95 through 1.05 P.U, volts. This has caused constant power failure in our transmission net work. This sad situation of power failure noticed in the power transmission network is contained by introducing an improvement in frequency stability of the Nigerian 330kV transmission network using fuzzy controller. It was achieved by first characterizing the 330kv transmission network by running load flow on the network, designing conventional SIMULINK model for improving frequency stability of the Nigerian 330kv transmission network, designing a rule base that makes these faulty buses to attain stability, integrating the designed rule to the conventional SIMULINK model for improving frequency stability of the Nigerian 330kv transmission network. The results obtained are conventional bus 1 per unit volts at 4s through 10s is 0.94. On the other hand, when fuzzy controller is incorporated in the system it is 1.043P.U volts. This shows that there is frequency stability when fuzzy controller is incorporated in the system since the per unit volts fall within the range of 0.95 through 1.05 P.U. volt and conventional per unit volts is 0.944 which makes the frequency unstable since the volts does not attain stability. Meanwhile, when fuzzy controller is incorporated in the system the per unit volts is 1.047. With these results, it shows that there is frequency stability when fuzzy controller is imbibed in the system. Since the per unit volt fall within the stability range of 0.95 through 1.05P.U. Volts.\",\"PeriodicalId\":125088,\"journal\":{\"name\":\"American Journal of Electrical Power and Energy Systems\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Electrical Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EPES.20211003.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Electrical Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.EPES.20211003.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在输电网中观察到的频率不稳定性主要是由于单位伏特不落在0.95至1.05 P.U伏特之间。这导致我们的输电网不断停电。通过对尼日利亚330kV输电网采用模糊控制器改善频率稳定性的方法,控制了输电网中出现的这一可悲的停电情况。首先通过运行负荷流对330kv输电网进行表征,设计常规的SIMULINK模型以提高尼日利亚330kv输电网的频率稳定性,设计使故障母线稳定的规则库,将设计的规则与常规的SIMULINK模型相结合以提高尼日利亚330kv输电网的频率稳定性。得到的结果是常规母线1每单位伏特在4s到10s是0.94。另一方面,当系统中加入模糊控制器时,它是1.043P。U伏特。这表明,当系统中加入模糊控制器时,由于单位伏特在0.95至1.05 P.U.伏特范围内,而常规的单位伏特为0.944,这使得频率不稳定,因为伏特没有达到稳定。同时,加入模糊控制器后,系统的单位电压为1.047。结果表明,在系统中引入模糊控制器后,系统具有频率稳定性。由于单位伏特落在0.95至1.05P.U的稳定范围内。伏特。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Frequency Stability of the Nigerian 330kv Transmission Network Using Fuzzy Controller
The frequency instability observed in the power transmission network was mainly as a result of the per unit volts not falling within 0.95 through 1.05 P.U, volts. This has caused constant power failure in our transmission net work. This sad situation of power failure noticed in the power transmission network is contained by introducing an improvement in frequency stability of the Nigerian 330kV transmission network using fuzzy controller. It was achieved by first characterizing the 330kv transmission network by running load flow on the network, designing conventional SIMULINK model for improving frequency stability of the Nigerian 330kv transmission network, designing a rule base that makes these faulty buses to attain stability, integrating the designed rule to the conventional SIMULINK model for improving frequency stability of the Nigerian 330kv transmission network. The results obtained are conventional bus 1 per unit volts at 4s through 10s is 0.94. On the other hand, when fuzzy controller is incorporated in the system it is 1.043P.U volts. This shows that there is frequency stability when fuzzy controller is incorporated in the system since the per unit volts fall within the range of 0.95 through 1.05 P.U. volt and conventional per unit volts is 0.944 which makes the frequency unstable since the volts does not attain stability. Meanwhile, when fuzzy controller is incorporated in the system the per unit volts is 1.047. With these results, it shows that there is frequency stability when fuzzy controller is imbibed in the system. Since the per unit volt fall within the stability range of 0.95 through 1.05P.U. Volts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信